
The	Try-statement		

As you now know, an attempt to divide by 0 throws an ArithmeticException, which in this program causes
immediate, abnormal termination. In this activity, we introduce the try-statement, which allows the programmer to
catch and handle such thrown objects.

In order to "catch" the thrown Exception, enclose the statement in a try-statement that has a catch clause attached
to it that catches the thrown ArithmeticException and processes it in some fashion:

 Calculate x;
 try {
 y= 5/x;
 }
 catch (ArithmeticException ae) {
 System.out.println(“X was 0; using 0 for 5.x”);
 y= 0;
 }
 next statement

The try-statement consists of keyword try; followed by a block, called the try-block; followed by a catch clause,
which consists of keyword catch, the declaration of a parameter, and a block, called the catch-block. The class-name
that gives the type of the parameter being declared must be Throwable or one of it subclasses:

 try <try-block>
 catch (<par-dec-1>) <catch-block-1>

 …
 catch (<par-dec-n>) <catch-block-n>

where each <par-dec> has the form

 <throwable-class ae> (use any variable name you want instead of ae)

We can see that the try-statement in the activity window has this form: Keyword try is followed by a block,
which is followed by keyword catch, which is followed by a declaration of parameter ae within parentheses, which
is followed by another block.

Execution of the try-statement

We describe execution of a try-statement. Assume that this statement occurs in
some method that has been called and that the frame for this call contains variable
ae, the parameter of the catch clause. Of course, because of the placement of the
declaration of ae, ae can be referenced only within the catch-block.

Note: Any time a method is called, a “frame for the call” is created, which
contains the parameters and local variables of the method. After assigning arguments of the call to the parameters,
the method body is executed, using the parameters and local variables that were allocated space in the frame for the
call. We will show it in detail in later lectures.

To execute the try-statement:

Execute the try-statement. Execute the <try-block>.We have two cases to consider, depending on whether
execution throws an object or not.

1. If no object is thrown, execution of the try-statement terminates when execution of the try-block does. This is the
usual case.

2. If execution throws some object a0, the try-block abnormally terminates. What happens next depends on the catch
clause(s) that follow the try-block.

2A. Suppose the class of some catch-clause parameter matches the class of instance a0. Choose the first one that
does. Assign a0 to parameter ae and execute the catch-block. The catch-block can reference ae, so it can reference
object a0. So it can look at the detail message for this thrown object and also print the call stack that is contained in
the thrown object.

frame for call

method name

ae _____

The	Try-statement		

2B. Suppose 2A does not happen. Then, throw exception a0 to another place. In other words, throw a0 as if there
had not been a try-statement.

