
Casting	with	interfaces	

 Here is a class A, two interfaces, and a class B that extends A
and implements the two interfaces.

We show you what an object of class B looks like in three
steps. First, we draw classes B, A, and Object, showing not the full
partitions, as we have been doing, but only their names.

Second, since B implements C1, we draw a new line from B
upward to C1, and the same for C2.

Third, we draw lines from C1 and C2 to Object, since, as we
will see, the perspective of a C1 variable allows access to the methods in Object. Remember, class Object is the su-
perest class of them all: any class or interface that does not explicitly extend something automatically extends Ob-
ject. We use dashed lines, since they go from an interface upward to a class.	

Casting

We also show a variable b that contains a pointer to the object. This object can be cast to any of the classes and
interfaces you see in the object, in any order, and to nothing else. For example, b can be cast to A, then to C1, and
the result can be stored in variable h.

 C1 h= (C1) (A) b;

Java will do upward casts automatically, as you know, but downward (or sideways casts) have to be done explicitly.

What method calls like h.m(…) are legal? Variable h has a C1 perspective. The Java rule, as you know, is that
m must be declared in C1 or its superclass, Object. If m is not declared in C1 or Object, the call is illegal and the
program will not compile.

If m(…) is legal, which m(…) will be called at runtime? As always, the overriding one.

The call h.equals(…) is legal, since equals is declared in superest class Object. What one is called? Look first in
B, then A, then Object.

Interfaces may appear more than once in an object

You can skip this part and come back to it when you are
more at ease with interfaces.

Let’s add a new interface C3 and a new class D. Note that
interface C3 extends interface C1. To the right, we draw an
object of class D as well as a variable that points to it.

Interfaces C1 appear twice in the object! If we do a cast

 (C1) d

which C1 is meant? Well, it doesn’t matter. First, the same
methods m(…) are available from both perspectives. Second,
the overriding method ((C1) d).m(…) is the same in both —the
one in class D. In fact, it would be OK to have just one parti-
tion for C1 in the hierarchy, with an upward line from each
class or interface that extends it.

	

public	class	A	{	…	}	

public	interface	C1	{	…}	

public	interface	C2	{	…}	

class	B	extends	A	implements	C1,	C2	{	…	}	
	

A	

Object	

B	

A	

Object	

B	

C1	 C2	

Each name represents a
partition containing de-
clared components A

Object	

B	

C1	 C2	

	B@6	
	B	

		b	

public	interface	C3	extends	C1	{	…	}	

public	class	D	extends	B	implements	C3	{	…	}	

C1	

Object	

A C2

B

D

	

C3

C1

	D@50	 D					d	

	

