
Abstract	classes	and	methods	

We give a simple explanation of abstract classes and abstract methods.

Making a class abstract

Consider class Shape and one of its subclasses, Circle, outlined
to the right. There would be other subclasses, like Rectangle, and
Triangle.

Class Shape is there to hold information that is common to all
subclasses, like the position of a shape in a GUI window. We don’t
want users to create instances of class Shape because an instance
really isn’t a shape; all it holds is the position of shapes.

In order to prevent users from creating instances of class Shape,
make Shape abstract by putting keyword abstract between public
and class:

 public abstract class Shape { … }

Doing that makes the expression new Shape(…) illegal; if you use
it, your program won’t compile.

You can still have Shape variables. Example: you can do this:

 Shape sp= new Circle(5, 10, 2.5);

But you can’t do this:

 Shape sp= new Shape(5, 10);

Reason for making a class abstract: So you cannot create in-
stances of it; it cannot be “newed”.

Making a method abstract

You know the rule in Java that for a variable sp with a Shape perspective, meaning it
was declared as a Shape variable, a method call like sp.area() is legal only if it is declared
in class Shape or one of its superclasses. Your program won’t compile if it has a call

 sp.area(5, 6, 2.5)

because method area() is not defined in Shape or in Object. Java has this rule because it wants to be sure that the
method exists at runtime. It wouldn’t exist at runtime if some subclass of Shape didn’t declare area(), and there is no
way to guarantee that.

So that we don’t have to cast down to a subclass to call method area(), we put
the method in class Shape. This method should not be called, since there is no
known area in Shape. So we have it throw an exception.

But we still have a problem. Some subclass may not implement method ar-
ea(). To force all subclasses to implement the method, we make the method ab-
stract, by placing keyword abstract after public and replacing the method body
by a semicolon “;”.

Reason for making a method in an abstract class abstract: So subclasses
must implement it.

Note: Some subclass C of Shape could also be abstract. If C is abstract, it doesn’t
have to implement method area() —but subclasses of C would have to implement
it.

/**	An	instance	maintains	the	position	of	a	
				*		shape	in	a	window.	*/	
public																class	Shape	{	
						private	int	x;		//shape	is	at	(x,y)	
						private	int	y;		
…	
}	
	
/**	An	instance	is	a	Circle	at	a	position	in	a	
							window.	*/	
public		class	Circle	{	
						private	double	radius;		//shape	is	at	(x,y)	
							
						/**	Constructor:	Circle	at	(x,	y)	radius	r	*/	
					public	Circle(int	x,	int	y,	double	r)	{	
													super(x,	y);		radius=	r;	
					}	
	
					/**	=	area	of	this	circle	*/	
					public	double	area()	{	
														return	Math.PI	*	radius	*	radius;	
					}	
…	
}	

Circle@5	
Shape	

sp	

Put	this	method	in	class	Shape	
/**	=	area	of	this	circle	*/	
public	double	area()	{	
					throw	new	
										RunTimeException(“why”);	
}	

Put	this	method	in	class	Shape	
/**	=	area	of	this	circle	*/	
public	abstract	double	area()	;	

