CS2110 Fall 2017 Assignment A4. Sharing in Social Networks Due date: on CMS

A4 - Going Viral

Table of Contents

1. Introduction 4. Running 7. What to submit
2. Sharing in Social Networks 5. Your tasks
3. Installation 6. Debugging

1. Introduction

Note: Please keep track of the time you spend on this assignment. You will have to give it to us when you
submit.

Content —posts, memes, videos— can be shared on social networks. Some content is only posted
once. Other content is reposted over and over; it goes viral! A4 uses trees to model how content spreads
through a social network. The root of the tree represents the first person to post the content, and the chil-
dren of each node represent the people who saw the post by the person represented by that node.

Most of the code you write for A4 involves using recursion to explore a tree. We have supplied you
with starter code that simulates the propagation of a shared post as well as a GUI (Graphical User Inter-
face) that allows you to set parameters and visualize the results on the screen. But the simulation won’t
work until you write recursive methods to process the tree.

Learning objective: Become fluent in using recursion to process data structures such as trees.

Collaboration policy: You may do A4 with one other person. If you are going to work together, as soon
as possible —and certainly before you submit the assignment— visit the CMS for the course and form a
group. Both people must do something to form a group: one person proposes and the other accepts.

If you do this assignment with another person, you must work together. It is against the rules for one
person to do some programming on this assignment without the other person sitting nearby and helping.
You should take turns “driving” —using the keyboard and mouse— and “navigating” —reading and re-
viewing the code on the screen.

Academic Integrity: With the exception of your CMS-registered partner, you may not look at anyone
else's code from this semester or a previous semester, in any form, or show your code to anyone else, in
any form. You may not show or give your code to another person in the class.

Getting help: If you don't know where to start, if you don't understand testing, if you are lost, etc., please
SEE SOMEONE IMMEDIATELY—a course instructor, a TA, a consultant, the Piazza for the course. Do
not wait.

2. Sharing in Social Networks

Social networks have become a pervasive component of modern life. They connect friends and profes-
sional acquaintances, and they are fun! Social networks also have a growing economic impact. Ad-driven
social networks are now some of the most valuable companies in the United States. And influential con-
tent-drivers can build careers off of a social network presence. Understanding how content spreads
through a social network is therefore a priority for economists, sociologists, and psychologists.

In A4, we use an extremely simple model of how content is shared in a social network. We model a
social network as a set of cliques —subsets of the network corresponding to social groups in which al-
most everyone is friends with almost everyone else— connected by a few links between cliques —
friendships between people with different hobbies, backgrounds, or languages. At each time-step, an indi-
vidual can choose to share content they have seen with some probability; this probability can be different
depending how interesting the original post is and on whether the person they saw it from is in the same
clique or in a different clique. (In the real world, most content is more likely to be shared within a single

CS2110 Fall 2017 Assignment A4. Sharing in Social Networks Due date: on CMS

clique, but not across cliques. Viral content, however, is universally appealing and is equally likely to be

shared within a clique or across cliques.) This model provides a real world example of the general tree

data structure.

You are not responsible for writing any of the code that implements the simulation of how content

spreads through a social network.

The model is initialized with a population of people —1, 2, 10, 50, however many you choose—
divided into some number of cliques—1, 2, 5, however many you choose. At the beginning of the simula-

tion, a graph is constructed with people as nodes and with random edges between people, indicating they

are friends in the social network. You supply a probability indicating that two people in the same clique

are friends and a probability that two people in different cliques are friends. A probability of 1 means the

two people definitely are friends, a probability of 0 means they definitely are not friends.

When you start the program, you supply three other numbers: the interest score of the content, in
0..10; the probability that a person shares content they saw from a friend in the same clique; and the prob-

ability that a person shares content they saw from a friend in a different clique. Once you have given this

input, the program starts by making one random person post the content and making that person the root
of a new sharing tree. Initially, that is the only node in the tree.

A series of time-steps follows. In each time-step, a couple different things happen. (1) Each person
who has seen the content decides whether to share it with their friends. (2) The interest score of the con-

tent —to people who have already seen it— goes down by one. These time steps continue until everyone

in the network has either seen the content or has lost interest (the local interest score has gone down to

zero). At that time, the results are shown in a GUI on your monitor.

2

00

A4 Social Network Sharing Explorer

Depth
0

Joseph

William

No. steps in simulation: 8

Selected Person Depth: 1
Selected Level Width: 7

Selected Person: John
Parent: Joseph
Children: 0

Subtree Size: 1
Subtree depth: 0
Subtree width: 1

Selected People: Michael and John
Sharing Route: null
Shared Parent: Joseph

Above is an example of the output in the GUIL. At depth O (the root) is Joseph; at depth 1 are Michael,

John, Charles, Richard, David, Mary, and William. At depth 2 are James and Robert.

CS2110 Fall 2017 Assignment A4. Sharing in Social Networks Due date: on CMS 3

Joseph generated the original post; the people at level 1 saw Joseph’s post; the green nodes re-shared
the post, and James and Robert saw the re-shared post from Michael. Most people were interested enough
to re-share the post; only Mary got bored before deciding to re-share it.

To the right in the image above is data that comes from selecting (with your mouse) Michael and then
John. It shows: John’s depth, 1; the width at (number of nodes at) that level, 7; John’s parent, number of
children, subtree depth, and subtree width; and the shared ancestor of Michael and John.

A run may result in a tree with one node, as shown to Depth
he richt. This h h h (oinal ., James Selected Person Depth: 0
the right. This happens wi ept e original post 1sn’t seen Sl) (L R o 1
by anyone because the original poster doesn’t have any 0 O
friends in the social network. Selected Person: James
Parent: null
Children: 0
Subtree Size: 1
Subtree depth: 0
Subtree width: 1
Selected People: null and James
3. Installation
1. Download the A4 assignment zip file from the CMS or the course website.
2. Unzip the downloaded file. The folder should contain two folders, data and src, and a file lib.jar.
3. Create a new Java project (called A4, for example).
4. Copy-paste. all three items in the File and Folder Operation
downloaded folder into the root of the new
Java project in Eclipse (i.e. data, src, Select how files and folders should be imported into the project:
lib.jar). When asked how to copy, select © Copy files and folders
Copy files and folders”, then OK. Link to files and folders
When asked what you want to do about Link to files and recreate folder structure with virtual folders
the folder already named src there, click
“Yes” or “Yes to All” v PROJECT_LOC 0]
@ cancel | (TSN
5. Right-click the project root and select refresh (F5).

Many of the files (as seen below) will have errors on them.
This is resolved in steps 6..7.

ir(mazn. rai

6. Add lib jar to the build path Qizailtiid _ > B addEdae(|
. .. oo » (A5 Show In X #EW > }
by right clicking lib.jar and select- > g : }
ing Build Path > Add to build path » (a7 =) Copy #8C . }
» [Casters 2 Copy Qualified Name 28}
- - 29
: bJJ gzlazof A4 Paste B’V public Network(D
bj Py © & Delete ® |31 super();
> i~ DerpArea 3 addvertex(dt.gi
> & DerpArea2 Remove from Context recCreate(dt);
» (& > Fina [Fint !

» i IceMaze Mark as Landmark

YTy Build Path > «s Add to Build Path
» (> shipping¢ Refactor 8T >

» (= ShippingRe &x: Configure Build Pz

lonn ad — —_ ____ ___

CS2110 Fall 2017 Assignment A4. Sharing in Social Networks Due date: on CMS 4

7. Add JUnit4 jar to the build path. One way is to create a new JUnit testing class, as usual, and
make sure JUnit 4 is add. Instead, you can do this:

a. (1) Select the project, right click, and select Build Path -> Add libraries.

b. (2) In the window that opens, select JUnit and click Next; in the window that opens, select JUnit 4
and click Finish.

c. (3) Refresh your project root (f5) again.

4. Running

The executable class is Post.java. To run the project, open Post.java and click run (green button with
white arrow) or use menu item Run -> Run. You will be prompted for a few seeding values via the con-
sole at the bottom of eclipse. These are:

1. Size of population: how many people to model. A positive integer. A higher number may result in
a larger tree.

2. Number of cliques: the number of cliques in the modeled social network. A higher number may
result in a sparser tree.

3. Probability of connection within a clique: how likely two random people in the same clique are to
be friends. (On page 2, we call them neighbors). A float in the range [0,1].

4. Probability of connection across cliques: how likely two random people in different cliques are to
be friends. A float in the range [0,1]. This should probably be lower than the previous number.

5. Interest of the modeled content: A number in 0..10. The higher the number, the more likely it is to
be shared.

6. Sharing probability within a clique: the relative probability that a person shares content they saw
from someone else in the same clique. A float in [0,1].

7. Sharing probability across cliques: the relative probability that a person shares content they saw
from a friend in a different clique. A float in [0,1]

A nice set of starting values is: (50, 5, 0.8, 0.2, 5, 0.5, 0.1)

If you want to run Post.java repeatedly with the same parameters, you can put them in the program ar-
guments instead of having to type them into the console every time you run the program. This is done the
usual way (Run Configurations... = arguments).

If there is any issue with the arguments provided, either though the console or the program arguments
(health is less than 0, for example), you will be re-prompted to enter the arguments through the console.
Thus, if you have entered arguments in the arguments tab but are still prompted to enter arguments via the
console, there may be something wrong with the arguments you entered.

From there, the simulation will start modeling how a post would be shared —starting with a randomly
chosen poster and spreading across that person’s connections until everyone who has seen the post has
either re-shared it or has become bored.

After the simulation has finished running, the full tree is printed out by calling toStringVerbose(); then
the tree explorer GUI pops up.

5. Your Tasks

The only file you have to edit is SharingTree.java. Before jumping into the methods, be sure to thorough-
ly read the javadoc description of the class at the top of the file.

CS2110 Fall 2017 Assignment A4. Sharing in Social Networks Due date: on CMS 5

In order to complete the assignment, complete each method marked with a /TODO comment to the
specification listed above the method. There are 7 such methods. You may assume that all preconditions
to these methods are respected. In the case that they are not, any behavior (even non-deterministic) is ac-
ceptable. It’s best to leave the /TODO comments in —note that they are marked in blue on the right of
the text in Eclipse.

Recursion is your friend! The bulk of these functions are best and most easily written using recursion.
Iteration (using loops instead of recursive calls) may be possible but will certainly be more work both to
reason through and to debug.

Hint: Many of the functions you are asked to write can be written very simply or even trivially (one or
two lines) simply by relying on previous functions you have already written or ones that we wrote. The
order in which the /TODOs are given (top to bottom) and numbered in SharingTree.java is the order in
which to implement them.

Warning: Every time application Post (i.e. method main in Post.java) is called, a new, random, unrepeat-
able SharingTree is created, so you cannot debug the methods you are writing using that application. It is
best to use a JUnit testing class to test your methods and to run the program only when you know your
methods are correct.

Dos and Donts:

* Do read all the specifications of methods in SharingTree.java very thoroughly. You may choose
to read specs in other files, but they should not be too important. Read the files outside package
LinkedList only if you are particularly interested in them —you shouldn’t need to know more
than their javadocs in order to complete the assignment.

* Do not alter any of the other files given to you. You won’t be able to submit them, so your
SharingTree.java must work with unaltered versions of the other files.

* Do not change the method signatures of any method in SharingTree. The name and types of pa-
rameters should not be changed.

* Do not have println statements (which you added to help debug) in your code when you submit.
Comment them out or delete them before submitting.

* You may add new methods to SharingTree to help complete the required functions (some are on-
ly workable with the use of helper methods). Make sure that methods you add are private and
have a javadoc comment (/** ... */) specification.

6. Debugging

JUnit testing class SharingTreeTest, has a testing procedure for each method you have to write. We
urge you to test thoroughly, adding more test cases to each of the methods in order to systematically test
the functionality of SharingTree. Use the same testing practices you learned since Al and used in A2 and
A3. You won’t submit SharingTreeTest,java, so using it isn’t required. But, since Post.java is entirely
probabilistic, a JUnit file is the only way to systematically ensure that your SharingTree is correct.

Debugging your tree method can be difficult. It’s harder than with linked lists, where we were easily
able to test a// fields using toString(), toStringRev(), and size().

Pinned Piazza note A4 FAQs contains some help to get started on testing and debugging.
7. What to submit

Complete the information at the top of file SharingTree.java: your netid(s), the hours and minutes that
you spent on this assignment, and any comments you would like to make on this assignment.

Submit file SharingTree.java on the CMS.

