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Computer Security



Announcements
• Course evals are available. Fill them in by 3pm tomorrow 

to receive an extra 1% towards your final grade.
• Recitations this week will be on a variety of topics, you 

can attend whichever one you want:
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Tu 12:20 Bard 140 Regular Expressions We 12:20 Bard 140 Debugging
Tu 12:20 Hollister 368 Kooky Data Structures We 12:20 Olin 218 Dynamic Program.
Tu 12:20 Olin 216 Sound We 1:25 Bard 140 Version Control
Tu 12:20 Upson 216 Coding Interviews We 1:25 Upson 216 Optionals
Tu 1:25 Hollister 206 Java 9 We 2:30 Bard 140 TBA
Tu 1:25 Hollister 312 Dynamic Programming We 2:30 Phillips 407 Coding Interviews
Tu 2:30 Hollister 110 TBA We 7:30 Upson 142 Coding Interviews
Tu 2:30 Olin 165 Collections
Tu 3:35 Bard 140 Distributed Computing



Computer Science
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Computer Security
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Computer Security
• Security is about making sure that computers behave 

correctly
• A secure system should:

1) Do what it is supposed to do
2) Not do anything else
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What might go wrong
public class ObjectStore {

private Object[] objects;

public ObjectStore(int len){
objects = new Object[len];

}

public Object read(int i){
return objects[i];

}

public void store(int i, Object o){
objects[i]= o;

}
}
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OpenSSL
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struct { 
HeartbeatMessageType type; 
uint16 payload_length; 
opaque payload[HeartbeatMessage.payload_length]; 
opaque padding[padding_length]; 

} HeartbeatMessage; 



Heartbleed
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What might go wrong
public class ObjectStore {

private Object[] objects;

public ObjectStore(int len){
objects = new Object[len];

}

public Object read(int i){
return objects[i];

}

public void store(int i, Object o){
objects[i]= o;

}
}
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Code

Memory

ObjectStore OS = new ObjectStore(10);
...
store(12, o);
...
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Statics

Stack

Heap

0x00000000

objects
12
o

Ret ptr
Stack ptr

objects[i]= o;

exploit code

o



Skype Vulnerability
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What might go wrong
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tmp = tmp + 1;
store tmp to i;

Initially, i = 0

Thread 1 Thread 2

tmp = load i;

tmp = tmp + 1;
store tmp to i;

tmp = load i;

time

Load 0 from memory

Load 0 from memory

Store 1 to memory

Store 1 to memory



Copy-on-write (COW)
• Common resource optimization
• When someone copies a file, it doesn't really get copies
• If/when someone modifies the "copy" the original file gets 

copied and modified
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Privilege Escalation
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So how do we fix this?

• Testing
• Bug finding tools

• White-hat hacking
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So how do we fix this?
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Security by Design
• Build secure, trustworthy computer systems/applications/etc.
• Define what the system is supposed to do
• Make sure it does that (and only that)
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How do we specify what 
systems are and are not 

supposed to do?
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Example: Data Privacy
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What is Privacy?



Use-Based Privacy
• Privacy viewed as restrictions on uses [Cate02]
• Captures modern privacy goals

• express restrictions in presence of necessary sharing

Medical Data
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Social Network Data



Policy Language
[{"curr":"1", 
"states":{"1":{"name":"s1-1", 
"permissions":{"aggregate":true}, 
"transitions":{"aggregate":"s2-1"}, 
"defaultPermission":false}, 
"2":{"name":"s2-1", 
"permissions":{"fulfill":true}, 
"transitions":{}, 
"defaultPermission":true}}}, 
{"curr":"2", 
"states":{"1":{"name":"s1-2", 
"permissions":{"aggregate":true}, 
"transitions":{"aggregate":"s2-2"}, 
"defaultPermission":false}, 
"2":{"name":"s2-2", 
"permissions":{"fulfill":true}, 
"transitions":{}, 
"defaultPermission":true}}}]
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aggregate fulfill
aggregate



How do we make systems 
secure?
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Threat Models



Threat Models



Example: Threat Model for Data Privacy

DS
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Approaches to security
• Axiomatic security

• You trust someone else to 
get it right

28



Approaches to security
• Axiomatic security

• You trust someone else to 
get it right

• Constructive security 
• E.g., compiler checks, 

automated proofs
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Approaches to security
• Axiomatic security

• You trust someone else to 
get it right

• Constructive security 
• E.g., compiler checks, 

automated proofs
• Synthetic security

• Modify the code to add 
checks (e.g., monitoring)
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Approaches to security
• Axiomatic security

• You trust someone else to 
get it right

• Constructive security 
• E.g., compiler checks, 

automated proofs
• Synthetic security

• Modify the code to add 
checks (e.g., monitoring)

• Deterrence through 
accountability
• Make sure you'll notice if 

something goes wrong
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Example: Data Privacy from SGX
• Policy enforcement 

implemented by external 
monitor that runs on DHs
• monitor can send/receive values 

from DS
• monitor shares values with 

authorized programs co-located 
at DH
• auth decisions based on 

credentials
• unauthorized values are 

cryptographically sealed with 
associated policy to prevent 
authorized use

• monitor maintains taint for each 
program, automatically derives 
policies for derived values

Agent 
Authenticator

Data Source

Data Store

Policy Store
data->pol

Data Handler

Taints
pid -> pol
Credential
Authent.
Decision 
Engine

Program

Program

Program

Agent
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Security

33

[{"curr":"1", 
"states":{"1":{"name":"s1-1", 
"permissions":{"aggregate":true}, 
"transitions":{"aggregate":"s2-1"}, 
"defaultPermission":false}, 
"2":{"name":"s2-1", 
"permissions":{"fulfill":true}, 
"transitions":{}, 
"defaultPermission":true}}}]


