
CS 2110 28 November, 2017

Computer Security



Announcements
• Course evals are available. Fill them in by 3pm tomorrow 

to receive an extra 1% towards your final grade.
• Recitations this week will be on a variety of topics, you 

can attend whichever one you want:

2

Tu 12:20 Bard 140 Regular Expressions We 12:20 Bard 140 Debugging
Tu 12:20 Hollister 368 Kooky Data Structures We 12:20 Olin 218 Dynamic Program.
Tu 12:20 Olin 216 Sound We 1:25 Bard 140 Version Control
Tu 12:20 Upson 216 Coding Interviews We 1:25 Upson 216 Optionals
Tu 1:25 Hollister 206 Java 9 We 2:30 Bard 140 TBA
Tu 1:25 Hollister 312 Dynamic Programming We 2:30 Phillips 407 Coding Interviews
Tu 2:30 Hollister 110 TBA We 7:30 Upson 142 Coding Interviews
Tu 2:30 Olin 165 Collections
Tu 3:35 Bard 140 Distributed Computing



Computer Science

3

Systems

Theory

Networking

Programming 
Languages

Graphics

Human–
Computer 
InteractionVision

Natural 
Language 
Processing

Machine 
Learning

Architecture

Scientific 
Computing

Databases

Software 
Engineering

Robotics

Computer Science

Systems

Theory

Networking

Programming 
Languages

Graphics

Human–
Computer 
InteractionVision

Natural 
Language 
Processing

Machine 
Learning

Architecture

Scientific 
Computing

Databases

Software 
Engineering

Robotics

Computer Science

Security



Computer Security

4

Networking

Programming 
Languages

Graphics

Human–
Computer 
InteractionVision

Natural 
Language 
Processing

Machine 
Learning

Architecture

Scientific 
Computing

Databases

Software 
Engineering

Robotics

Systems

Theory

Architecture

Security

Networking

Programming 
Languages

Graphics

Human–
Computer 
InteractionVision

Natural 
Language 
Processing

Machine 
Learning

Architecture

Scientific 
Computing

Databases

Software 
Engineering

Robotics

Systems

Theory

Security

Human–
Computer 
Interaction



Computer Security
• Security is about making sure that computers behave 

correctly
• A secure system should:

1) Do what it is supposed to do
2) Not do anything else

5



What might go wrong
public class ObjectStore {

private Object[] objects;

public ObjectStore(int len){
objects = new Object[len];

}

public Object read(int i){
return objects[i];

}

public void store(int i, Object o){
objects[i]= o;

}
}

6



OpenSSL

7

struct { 
HeartbeatMessageType type; 
uint16 payload_length; 
opaque payload[HeartbeatMessage.payload_length]; 
opaque padding[padding_length]; 

} HeartbeatMessage; 



Heartbleed

8



What might go wrong
public class ObjectStore {

private Object[] objects;

public ObjectStore(int len){
objects = new Object[len];

}

public Object read(int i){
return objects[i];

}

public void store(int i, Object o){
objects[i]= o;

}
}

9



Code

Memory

ObjectStore OS = new ObjectStore(10);
...
store(12, o);
...

10

Statics

Stack

Heap

0x00000000

objects
12
o

Ret ptr
Stack ptr

objects[i]= o;

exploit code

o



Skype Vulnerability

11



What might go wrong

12

tmp = tmp + 1;
store tmp to i;

Initially, i = 0

Thread 1 Thread 2

tmp = load i;

tmp = tmp + 1;
store tmp to i;

tmp = load i;

time

Load 0 from memory

Load 0 from memory

Store 1 to memory

Store 1 to memory



Copy-on-write (COW)
• Common resource optimization
• When someone copies a file, it doesn't really get copies
• If/when someone modifies the "copy" the original file gets 

copied and modified

13



Privilege Escalation

14



So how do we fix this?

• Testing
• Bug finding tools

• White-hat hacking

15



16



So how do we fix this?

17



Security by Design
• Build secure, trustworthy computer systems/applications/etc.
• Define what the system is supposed to do
• Make sure it does that (and only that)

18



How do we specify what 
systems are and are not 

supposed to do?

19



Example: Data Privacy

20



What is Privacy?



Use-Based Privacy
• Privacy viewed as restrictions on uses [Cate02]
• Captures modern privacy goals

• express restrictions in presence of necessary sharing

Medical Data

22

Social Network Data



Policy Language
[{"curr":"1", 
"states":{"1":{"name":"s1-1", 
"permissions":{"aggregate":true}, 
"transitions":{"aggregate":"s2-1"}, 
"defaultPermission":false}, 
"2":{"name":"s2-1", 
"permissions":{"fulfill":true}, 
"transitions":{}, 
"defaultPermission":true}}}, 
{"curr":"2", 
"states":{"1":{"name":"s1-2", 
"permissions":{"aggregate":true}, 
"transitions":{"aggregate":"s2-2"}, 
"defaultPermission":false}, 
"2":{"name":"s2-2", 
"permissions":{"fulfill":true}, 
"transitions":{}, 
"defaultPermission":true}}}]

23

aggregate fulfill
aggregate



How do we make systems 
secure?

24



Threat Models



Threat Models



Example: Threat Model for Data Privacy

DS

27



Approaches to security
• Axiomatic security

• You trust someone else to 
get it right

28



Approaches to security
• Axiomatic security

• You trust someone else to 
get it right

• Constructive security 
• E.g., compiler checks, 

automated proofs

29



Approaches to security
• Axiomatic security

• You trust someone else to 
get it right

• Constructive security 
• E.g., compiler checks, 

automated proofs
• Synthetic security

• Modify the code to add 
checks (e.g., monitoring)

30

Code

Code

Monitor



Approaches to security
• Axiomatic security

• You trust someone else to 
get it right

• Constructive security 
• E.g., compiler checks, 

automated proofs
• Synthetic security

• Modify the code to add 
checks (e.g., monitoring)

• Deterrence through 
accountability
• Make sure you'll notice if 

something goes wrong

31



Example: Data Privacy from SGX
• Policy enforcement 

implemented by external 
monitor that runs on DHs
• monitor can send/receive values 

from DS
• monitor shares values with 

authorized programs co-located 
at DH
• auth decisions based on 

credentials
• unauthorized values are 

cryptographically sealed with 
associated policy to prevent 
authorized use

• monitor maintains taint for each 
program, automatically derives 
policies for derived values

Agent 
Authenticator

Data Source

Data Store

Policy Store
data->pol

Data Handler

Taints
pid -> pol
Credential
Authent.
Decision 
Engine

Program

Program

Program

Agent

32



Security

33

[{"curr":"1", 
"states":{"1":{"name":"s1-1", 
"permissions":{"aggregate":true}, 
"transitions":{"aggregate":"s2-1"}, 
"defaultPermission":false}, 
"2":{"name":"s2-1", 
"permissions":{"fulfill":true}, 
"transitions":{}, 
"defaultPermission":true}}}]


