

Parallel Programming Thus Far

Q Parallel programs can be faster and more efficient

QO Problem: race conditions
Q Solution: synchronization

Are there more efficient ways to ensure
the correctness of parallel programs?

Selling Widgets

public class WidgetStore{
private int numiWidgets;

/** produce widgets */
public void produce(){..}

/** sell all the widgets */
public void sell(){..}

/** diplay widget if there
/* are any available */
public void display(){..}

display() might continue displaying
widgets after all the widgets are sold!!!

Caching

Data is stored in caches:
small, fast storage units

Only written to main memory
occasionally

Huge efficiency gains!

Each CPU has its own cache
Each thread maintains its own

cache entries
Huge concurrency headaches!

///ﬁ CPU 1

Thread 1

CPU 1
cache

J

_*

//r' CPU 2

Thread 2

CPU 2
cache

J

-

keyword volatile

public class WidgetStore{
private volatile int numWidgets;

Variables declared as
volatile will not be stored in
the cache. All writes will
write directly to main
memory. All reads will read
directly from main memory.

/** produce widgets */
public void produce(){..}

/** sell all the widgets */
public void sell(){..}

/** diplay widget if there
/* are any available */
public void display(){..}

Handling Writes
—

int numWidgets =

AN

Thread 1(produce) Thread 2 (sell)

numWidgets++; numWidgets--;

What is the value of x2

Handling Writes
—

volatile int numWidgets =

SN

Thread 1(produce) Thread 2 (sell)

numWidgets++; numWidgets--;

What is the value of x2

The Problem with Writes...

Thread 1 Thread 2

Initially, i = 0

tmp = tmp + 1;

store tmp to i; Store 1 to memory

tmp = tmp - 1;
Store 1 to memory

store tmp to i;

time
Finally, i = -1

Concurrent Writes
—

Solution 1: synchronized

Solution 2: atomic values

private int numWidgets;
public void produce(){

synchronized(this){

private AtomicInteger numWidgets;
public void produce(){

synchronized(this){

numWidgets++; numWidgets++;
} }
} }
* |t works Less powerful

e But locks can be slow

 More efficient

Atomic Values

0 Package java.util.concurrent.atomic defines a
toolkit of classes that implement atomic values
0 atomic values support lock-free, thread-safe

programming on single variables

a0 class Atomicinteger, AtomicReference<E>, ...

a Atomic values extend the idea of volatile
a0 method get(): reads current value like volatile
0 method set(newValue): writes value like volatile

Q implements new atomic operations

Compare and Set (CAS)

0 boolean compareAndSet(expectedValue, newValue)
Q If value doesn’t equal expectedValue, return false
if equal, store newValue in value and return true
executes as a single atomic action!
supported by many processors — as hardware instructions
does not use locks!

I R WA

AtomicInteger n = new AtomicInteger(5);
n.compareAndSet(3, 6); // return false - no change
n.compareAndSet(5, 7); // returns true - now is 7

Incrementing with CAS
-

/** Increment n by one. Other threads use n too. */
public static void increment(AtomicInteger n) {
int i = n.get();
while (!n.compareAndSet(i, i+1l)) {
i = n.get();
}
}

// AtomicInteger has increment methods that do this
public int incrementAndGet()

public int addAndGet(int delta)

public int updateAndGet(InUnaryOperator updateFunction)

Locks with CAS

public class WidgetStore{
private int numWidgets;

/** produce widgets */
public synchronized void produce(){..}

}

public class WidgetStore{
private int numWidgets;
private boolean lock;

/** produce widgets */
public synchronized void produce(){
while(!lock.compareAndSet(false, true)){}

lock = false;

Lock-Free Data Structures

T =
Usable by many concurrent threads

using only atomic actions — no locks!
compare and swap is your best friend

U O 0O O

but it only atomically updates one variable at a

Let’s look at one!

timel

QO Lock-free binary search tree [Ellen et al., 2010]
http://www.cs.vu.nl//~tcs /em /cds/ellen.pdf

More Concurrency

0 Concurrency is actually an OS-level concern
o Different platforms have different concurrency
APIs
a0 Programming languages provide abstractions
0 There are lots of techniques for write concurrent
programs
a lock (e.g., synchronized), mutex
atomic operations

0

QO semaphores

a0 condition variables
0

transactional memory

