Atomicity

11/13/17

Parallel Programming Thus Far

o Parallel programs can be faster and more efficient

o Problem: race conditions
o Solution: synchronization

Are there more efficient ways to ensure
the correctness of parallel programs?

Selling Widgets

public class WidgetStore{
private int numwidgets;

/** produce widgets */
public void produce(){..}

/** sell all the widgets */
public void sell(){..}

/** diplay widget if there
/* are any available */
public void display(){..}

display()

display() might continue displaying
widgets after all the widgets are sold!!!

Caching

a Data is stored in caches:
small, fast storage units

cPU1

a Only written to main memory
occasionally

o Huge efficiency gains!

cPU2

Thread 2

Each CPU has its own cache
Each thread maintains its own
cache entries

o Huge concurrency headaches!

Main
Memory

keyword volatile

public class WidgetStore{

private yolatile int numWidgets;

/** produce widgets */
public void produce(){..}

/** sell all the widgets */
public void sell(){..}

/** diplay widget if there
/* are any available */
public void display(){..}

Variables declared as
volatile will not be stored in
the cache. All writes will
write directly to main
memory. All reads will read

directly from main memory.

Handling Writes

int numWidgets = 0;

Thread 1(produce) Thread 2 (sell)

numWidgets++; numWidgets--;

What is the value of x2
[an be either -1, 0, or 1!]

Handling Writes

Ivolaﬁle int numWidgets = 0; I

P4

Thread 1(produce)

Thread 2 (sell)

numWidgets++; numWidgets--;

What is the value of x2

Concurrent Writes

Solution 1: synchronized Solution 2: atomic values

private int numiWidgets;

public void produce(){

private AtomicInteger numWidgets;

public void produce(){

synchronized(this){ synchronized(this){
numiWidgets++; numiWidgets++;
} }
} }

* It works * Less powerful

» But locks can be slow * More efficient
Compare and Set (CAS)

|

o boolean compareAndSet(expectedValue, newValue)
0 If value doesn’t equal expectedValue, return false
Q if equal, store newValue in value and return true
QO executes as a single atomic action!
Q supported by many processors — as hardware instructions
Q

does not use locks!

AtomicInteger n = new AtomicInteger(5);
n.compareAndSet(3, 6); // return false - no change
n.compareAndSet(5, 7); // returns true - now is 7

11/13/17

The Problem with Writes...

|
Thread 1 Thread 2
Initially, i = 0

Load 0 from memory tmp = load

tmp = tmp +1;
Store 1 to memory

store tmp to i;

tmp =tmp - 1;
Store 1 to memory o

store tmp to i;

Finally, i =-1

Atomic Values

=

o Package java.util.concurrent.atomic defines a
toolkit of classes that implement atomic values
o atomic values support lock-free, thread-safe

programming on single variables

o class Atomiclnteger, AtomicReference<t>, ...

o Atomic values extend the idea of volatile
o method get(): reads current value like volatile
o method set(newValue): writes value like volatile
0 implements new atomic operations

Incrementing with CAS
f

/** Increment n by one. Other threads use n too. */
public static void increment(AtomicInteger n) {
int i = n.get();
while (!n.compareAndSet(i, i+1)) {
i = n.get();
}
}

// AtomicInteger has increment methods that do this
public int incrementAndGet()

public int addAndGet(int delta)

public int updateAndGet(InUnaryOperator updateFunction)

Locks with CAS
|
public class WidgetStore{
private int numWidgets;
/** produce widgets */
public synchronized void produce(){..}
3
public class WidgetStore{
private int numWidgets;
private boolean lock;
/** produce widgets */
public synchronized void produce(){
while(!lock.compareAndSet(false, true)){}
lock = false;
}
More Concurrency
|

o Concurrency is actually an OS-level concern

u Different platforms have different concurrency
APIs

o Programming languages provide abstractions

o There are lots of techniques for write concurrent
programs
a lock (e.g., synchronized), mutex

atomic operations

semaphores

condition variables

O 0o Oooo

transactional memory

11/13/17

Lock-Free Data Structures

Usable by many concurrent threads

using only atomic actions — no locks!

compare and swap is your best friend

but it only atomically updates one variable at a

Let’s look at one!

o Lock-free binary search tree [Ellen et al., 2010]

0O 0 o0 0o

time!

http://www.cs.vu.nl//~tcs /em /cds/ellen.pdf

