Synchronization

Lecture 23 — Fall 2017

Announcements

* A8 released today, Due: 11/21
* Late deadline is after Thanksgiving
* You can use your A6/A7 solutions or ours
* A7 correctness scores have been posted
* Next week's recitation will focus on A8

* Prelim 2 is in one week
* Deadline for conflicts is today

* Review session on Sunday 11/14

Concurrent Programs

A thread or thread of execution is a sequential stream
of computational work.

Concurrency is about controlling access by multiple
threads to shared resources.

\

Race Conditions

Thread 1 Thread 2

Initially, i = 0

tmp = tmp + 1;
store tmp to i;

t =t 4r 11
Store 1 to memory mp =tmp .
store tmp to i;

Store 1 to memory

htime

Finally, i = 1

Race Conditions

A race condition is a situation in which the result of
executing two or more processes in parallel can
depend on the relative timing of the execution of the
processes.
A race condition can arises if two threads try to
read and write the same data.
Often occurs if a thread might see the data in the
middle of an update (in a "inconsistent stare”)
Can lead to subtle and hard-to-fix bugs

Solved by synchronization

Purpose of this lecture

Show you Java constructs for eliminating race
conditions, allowing threads to access a data structure in
a safe way but allowing as much concurrency as possible.
This requires
(1) The locking of an object so that others cannot
access it, called synchronization.

(2) Use of other Java methods: Wait() and NotifyAll()

As an example, throughout, we use a bounded buffer.

Threads A: produce loaves of
bread and put them in the queue

An Example: Bounded Buffers

finit.é)-z:u_pii;— (e.g. 20 loaves)
implemented as a queue

Threads B: consume loaves by
taking them off the queue

ArrayQueue

Array b[0..5]

1 2 3 4 5 b.length

bﬁlﬂﬂﬂl

put values 5 3 6 2 4 into queue

ArrayQueue

Array b[0..5]

2 3 4 5 b.length

b ... Values wrap around!!

put values 5 3 6 2 4 into queue
get, get, get

put values 135

Threads A: produce loaves of
bread and put them in the queue

An Example: Bounded Buffers

fin apcii?(e.g. 20 loaves)

Separation of concerns:

1. How do you implement a queue in an array?

2. How do you implement a bounded buffer, which
allows producers to add to it and consumers to take
things from it, all in parallel?
BN |

Threads B: consume loaves by
taking them off the queue

ArrayQueue

Array b[0..5]

2 3 4 5 b.length
bﬁlﬂﬂﬂl
put values 5 3 6 2 4 into queue

get, get, get

ArrayQueue

h
2 3 4 5 b.length

b ... Values wrap around!!

int[] b; // The array elements of the queue are in
int h; // location of head, @ <= h < b.length
int n; // number of elements currently in queue

/** Pre: there is space */
public void put(int v){
b[(h+n) % b.length]= v; int v= b[h];
n= n+l; h= (h+1) % b.length
} n= n-1;
return v;

/** Pre: not empty */
public int get(){

Bounded Buffer
=5

** An instance maintains a bounded buffer of fixed size *
class BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*

public void produce(E v) { =
if(laq.isFull()){ aq.put(v) };

}

/** Consume v from the bounded buffer.*
public E consume() {

aq.isEmpty() ? return null : return aq.get();
}

Synchronized Blocks
o

public void produce(E v) {
synchronized(this){
if(laq.isFull()){ aq.put(v); }
}

You can synchronize (lock) any object, including this.

Bounded Buffer
=7

** An 1instance maintains a bounded buffer of fixed size *
class BoundedBuffer<E> {

ArrayQueue<E> aq;
What happens of aq is full?

/** Put v into the bounded buffer.*/

public synchronized void produce(E v) {

if(laq.isFull()){ aq.put(v); }

}

We want to wait until it becomes non-full —until there
is a place to put v.

Somebody has to buy a loaf of bread before we can put |;
more bread on the shelf.

Synchronized Blocks

|
a.k.a. locks or mutual exclusion

synchronized (q) {
) 1

if (!q.isEmpty()
g.remove();

At most one consumer thread can be trying to remove
something from the queue at a time.

While this method is executing the synchronized block,
object aq is locked. No other thread can obtain the lock.

Synchronized Methods
=

public void produce(E v) {
synchronized(this){
if(laq.isFull()){ aq.put(v); }
}

You can synchronize (lock) any object, including this.

public synchronized void produce(E v) {
if(laq.isFull()){ aq.put(v); }
}

Or you can synchronize methods
This is the same as wraping the entire method implementation
in a synchronized(this) block

Wait()
|]

For every synchronized object sobj, Java maintains:

1. locklist: a list of threads that are waiting to obtain
the lock on sobj

2. waitlist: a list of threads that had the lock but
executed wait()

* e.g., because they couldn't proceed

wait() is a method defined in Obiject

Wait()

** An 1instance maintains a bounded buffer of fixed size *

class BoundedBuffer<k> {

ArrayQueue<E> ag; need while loop (not if statement)

to prevent race conditions
the bounded buffer.*/
ronized void produce(E v) {
whil€(aq.isFull()){

puts thread on the wait list I

try { wait(

catch(InterruptedException e){}
}
ag.put(v); \ threads can be interrupted
notifyAll() if this happens just continue

notify() and notifyAll()

* notify() and notifyAll() are methods defined in
Object

* notify() moves one thread from the waitlist to the
locklist

* Note: which thread is moved is arbitrary

* notifyAll() moves all the threads on the waitlist to
the locklist

notify() and notifyAll()

C

** An 1instance maintains a bounded buffer of fixed size *
lass BoundedBuffer<E> {

ArrayQueue<E> aq;

/** Put v into the bounded buffer.*/
public synchronized void produce(E v) {
while(aq.isFull()){
try { wait(); }
catch(InterruptedException e){}

ag.put(v);
notifyAll()

WHY use of notify() may hang.

Two sets:

Work with a bounded buffer of length 1. 1. Runnable:
1. Consumer W gets lock, wants White bread, ".‘Teads
finds buffer empty, and wait()s: is put in set 2. B
2. Consumer R gets lock, wants Rye bread, LS
finds buffer empty, wait()s: is put in set 2. .

3. Producer gets lock, puts Rye in the buffer, 2. Wﬁ'tmg:
does notify(), gives up lock. w;it:r?; tz
4. The notify() causes one waiting thread to be be notified

moved from set 2 to set 1. Choose W.
5. No one has lock, so one Runnable thread, W, is given lock.
W wants white, not rye, so wait()s: is put in set 2.

6. Producer gets lock, finds buffer full, wait()s: is put in set 2.
All 3 threads are waiting in set 2. Nothing more happens.

Should one use notify() or notifyAll()

But suppose there are two kinds of bread on the shelf —and one
still picks the head of the queue, if it’s the right kind of bread.

Using notify() can lead to a situation in which no one can make
progress.

notifyAll() always works; you need to write documentation if
you optimize by using notify()

Using Concurrent Collections...

Java has a bunch of classes to make synchronization easier.
It has synchronized versions of some of the Collections classes

It has an Atomic counter.

From spec for HashSet

... this implementation is not synchronized. If multiple threads
access a hash set concurrently, and at least one of the threads
modifies the set, it must be synchronized externally. This is
typically accomplished by synchronizing on some object that
naturally encapsulates the set. If no such object exists, the set
should be "wrapped" using method Collections.synchronizedSet
This is best done at creation time, to prevent accidental
unsynchronized access to the set:

Set s = Collections.synchronizedSet(new HashSet(...));

Race Conditions

Thread 1 Thread 2

Initially, i = 0

tmp = load i; Load 0 from memory

t =t +1;
MY = UL Store 1 to memory

store tmp to i;

= +1:
Store 1 to memory tmp = tmp + 15

store tmp to i;

\

htime
Finally, i = 1

Using Concurrent Collections...

import java.util.concurrent.atomic.*;

public class Counter {
private static AtomicInteger counter;

public Counter () {
counter= new AtomicInteger (0) ;

public static int getCount () {
return counter.getAndIncrement () ;

}

Summary

Use of multiple processes and multiple threads within each
process can exploit concurrency

may be real (multicore) or virtual (an illusion)
Be careful when using threads:
synchronize shared memory to avoid race conditions
avoid deadlock
Even with proper locking concurrent programs can have other
problems such as “livelock”
Serious treatment of concurrency is a complex topic (covered in
more detail in ¢s3410 and cs4410)

Nice tutorial at
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.
html

