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Concurrency & Parallelism

So far, our programs have been sequential: they do 
one thing after another, one thing at a time.

Let’s start writing programs that do more than one 
thing at at a time.



Concurrent Work



Concurrency in Multiple Machines

• Datacenters and clusters are 
everywhere:

• Industrial:
Google, Microsoft, 
Amazon, Apple, 
Facebook…

• Scientific:
Several big clusters just 
in Gates Hall.



Multicore Processors

Every desktop, laptop, tablet, and smartphone you 
can buy has multiple processors.





Concurrency & Parallelism

Parallelism is about using additional computational 
resources to produce an answer faster.

Concurrency is about controlling access by multiple 
threads to shared resources.

A thread or thread of execution is a sequential stream 
of computational work.



Java: What is a Thread?

¨ A separate “execution” that runs within a single program and 
can perform a computational task independently and 
concurrently with other threads

¨ Many applications do their work in just a single thread: the one 
that called main() at startup 
¤ But there may still be extra threads...
¤ ... Garbage collection runs in a “background” thread
¤ GUIs have a separate thread that listens for events and 

“dispatches” calls to methods to process them
¨ Today: learn to create new threads of our own in Java
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Thread

¨ A thread is an object that “independently computes”
¤ Needs to be created, like any object
¤ Then “started” --causes some method to be called.  It runs 

side by side with other threads in the same program; they 
see the same global data

¨ The actual executions could occur on different CPU cores, but 
but don’t have to
¤ We can also simulate threads by multiplexing a smaller 

number of cores over a larger number of threads
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Java class Thread

¨ threads are instances of class Thread
¤ Can create many, but they do consume space & time

¨ The Java Virtual Machine creates the thread that executes 
your main method.

¨ Threads have a priority
¤ Higher priority threads are executed preferentially
¤ By default, newly created threads have initial priority equal 

to the thread that created it (but priority can be changed)
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Threads in Java

public static void main() {
...

}

Main Thread

CPUCPU
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Starting a new Java thread

1. Make a new class that implements Runnable.
2. Put your code for the thread in the run() method.

Don’t call the run method directly!
3. Construct a new Thread with the Runnable:

SomeRunnable r = new SomeRunnable(...);
Thread t = new Thread(r);

4. Call the Thread’s start() method.



main main main

starting

check2

composite

check1

prime done!

time

Sequential version:



main

starting

check2 composite

check1

prime

done!

time

Parallel version:



Creating a new Thread (Method 1)
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class PrimeThread extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a= a; this.b= b;

}

@Override public void run() {
//compute primes between a and b
...

}
} 

PrimeThread p= new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

Call run() directly?
no new thread is used:

Calling p.start() will run it

Do this and
Java invokes run() in new thread



Creating a new Thread (Method 1)
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class PTd extends Thread {

long a, b;

PTd (long a, long b) {
this.a= a; this.b= b;

}

@Override public void run() {
//compute primes between a, b
...

}
} 

PTd p= new PTd (143, 195);
p.start();

… continue doing other stuff …

run()

PTd@20

PTd

getId()   
getName 

getPriority

a___   b___

Thread
start()
run()
sleep(long)
interrupt
isInterrupted
yield
isAliveCalls start() in 

Thread partition

Calls run() to 
execute in a 
new Thread 

and then 
returns

method run() 
executes in one 

thread while 
main program 
coninues to 

execute  



Creating a new Thread (Method 2)
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class PrimeRun implements Runnable {
long a, b;

PrimeRun(long a, long b) {
this.a= a; this.b= b;

}

public void run() {
//compute primes between a and b
...

}
} 

PrimeRun p= new PrimeRun(143, 195);
new Thread(p).start();  



Example
20 public class ThreadTest extends Thread {

int M= 1000;       int R= 600;
public static void main(String[] args) {

new ThreadTest().start();
for (int h= 0; true; h= h+1) {

sleep(M);
System.out.format("%s %d\n", Thread.currentThread(), h);

}
}

@Override public void run() {
for (int k= 0; true; k= k+1) {

sleep(R);
System.out.format("%s %d\n", Thread.currentThread(), k);

}
}

We’ll demo this 
with different 
values of M and R.
Code will be on 
course website

sleep(…) requires 
a throws clause 
—or else catch it



Example
21 public class ThreadTest extends Thread {

int M= 1000;       int R= 600;
public static void main(String[] args) {

new ThreadTest().start();
for (int h= 0; true; h= h+1) { 

sleep(M); 
…format("%s %d\n", Thread.currentThread(), h);

}
}

@Override public void run() { 
for (int k= 0; true; k= k+1) { 

sleep(R); 
…format("%s %d\n", Thread.currentThread(), k);

} 
}

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[main,5,main] 1
Thread[Thread-0,5,main] 3
Thread[main,5,main] 2
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[main,5,main] 3
…

Thread name, priority, thread group



Example
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waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
static boolean ok = true;

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.println("waiting...");
yield();

}
ok = false;

}

public void run() {
while (ok) {

System.out.println("running...");
yield();

}
System.out.println("done");

}
}

If threads happen to be sharing
a CPU, yield allows other waiting

threads to run.



Terminating Threads is Tricky

- The safe way: return from the run() method.
- Use a flag field to tell the thread when to exit.

- Avoid old and dangerous APIs: stop(), interrupt(), 
suspend(), destroy()…
- These can leave the thread in a “broken” state.



Background (daemon) Threads

¨ In many applications we have a notion of “foreground” and 
“background” (daemon) threads
¤ Foreground threads are doing visible work, like interacting 

with the user or updating the display
¤ Background threads do things like maintaining data 

structures (rebalancing trees, garbage collection, etc.) A 
daemon can continue even when the thread that created it 
stops.

¨ On your computer, the same notion of background workers 
explains why so many things are always running in the task 
manager.
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Background (daemon) Threads

¨ demon: an evil spirit
¨ daemon. Fernando Corbato, 1963, first to use term. Inspired 

by Maxwell’s daemon, an imaginary agent in physics and 
thermodynamics that helped to sort molecules.

¨ from the Greek δαίμων. Unix System Administration 
Handbook, page 403: … “Daemons have no particular bias 
toward good or evil but rather serve to help define a person's 
character or personality. The ancient Greeks' concept of a 
"personal daemon" was similar to the modern concept of a 
"guardian angel"—eudaemonia is the state of being helped 
or protected by a kindly spirit. As a rule, UNIX systems seem to 
be infested with both daemons and demons.
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Producer & Consumer

producer consumer

generate a prime;
queue.add(p);

q = queue.remove();
System.out.println(q);

queue



Producer & Consumers

producer
consumers

generate a prime;
queue.add(p);

q = queue.remove();
System.out.println(q);

queue

q = queue.remove();
System.out.println(q);

q = queue.remove();
System.out.println(q);



Timing is Everything

if (!q.isEmpty()) {
long p = q.remove();

if (!q.isEmpty()) {
long p = q.remove();

Thread 1 Thread 2



A Fortunate Interleaving

if (!q.isEmpty()) {
long p = q.remove();

if (!q.isEmpty()) {
long p = q.remove();

time

queue length: 1

queue length: 0

queue length: 0

Condition is true!
Remove an element.

Condition is false.
Do nothing.

Thread 1 Thread 2



Another Fortunate Interleaving

if (!q.isEmpty()) {
long p = q.remove();

if (!q.isEmpty()) {
long p = q.remove();

time

queue length: 1

queue length: 0

queue length: 0

Thread 1 Thread 2



An Unfortunate Interleaving

if (!q.isEmpty()) {

long p = q.remove();

if (!q.isEmpty()) {

long p = q.remove();

time

queue length: 1

queue length: 1

NoSuchElementException!

Thread 1 Thread 2

queue length: 1

queue length: 0

Condition is true.

Condition is still true.

Remove an element.



Beginning to think about
avoiding race conditions

32

You know that race conditions can create  problems:

Basic idea of race condition: Two different threads access 
the same variable in a way that destroys correctness.

¨ Process t1 Process t2
… ...
x= x + 1; x= x + 1;

But x= x+1; is not an 
“atomic action”: it 
takes several step

Two threads may want to use the same stack, or
Hash table, or linked list, or … at the same time.



Synchronization

¨ Java has one primary tool for preventing race conditions.
you must use it by carefully and explicitly – it isn’t automatic.
¤ Called a synchronization barrier
¤ Think of it as a kind of lock

n Even if several threads try to acquire the lock at once, 
only one can succeed at a time, while others wait

n When it releases the lock, another thread can acquire it
n Can’t predict the order in which contending threads get 

the lock but it should be “fair” if priorities are the same
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Synchronized Blocks

a.k.a. locks or mutual exclusion

At most one thread can be in a synchronized (obj) block
for the same obj at any given time.

synchronized (obj) {
...

}



Synchronized Blocks

a.k.a. locks or mutual exclusion

At most one consumer thread can be trying to remove
something from the queue at a time.

synchronized (q) {
if (!q.isEmpty()) {
q.remove();

}
}



Solution: use with synchronization
36

private Stack<String> stack= new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
String s= stack.pop();

}
//do something with s...

}

• Put critical operations in a synchronized block
• Can’t be interrupted by other synchronized blocks
on the same object
• Can run concurrently with non-synchronized code
• Or code synchronized on a different object!

synchronized block



Example: a lucky scenario
37

private Stack<String> stack= new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s= stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack 

1. thread A tests stack.isEmpty() false
2. thread A pops  ⇒ stack is now empty
3. thread B tests stack.isEmpty()⇒ true
4. thread B just returns – nothing to do



What Can i Be at the End?

i += 1; i += 1;

Initially, i = 0

Finally, i = ?

Thread 1 Thread 2



What Can i Be at the End?

i += 1; i += 1;

Initially, i = 0

Finally, i = 2 or 1!

Thread 1 Thread 2



What Can i Be at the End?

tmp = load i;
tmp = tmp + 1;
store tmp to i;

Initially, i = 0

Thread 1 Thread 2

tmp = load i;
tmp = tmp + 1;
store tmp to i;



What Can i Be at the End?

tmp = tmp + 1;
store tmp to i;

Initially, i = 0

Thread 1 Thread 2

tmp = load i;

tmp = tmp + 1;
store tmp to i;

tmp = load i;

Finally, i = 1
time

Load 0 from memory

Load 0 from memory

Store 1 to memory

Store 1 to memory



A Pretty Good Rule

Whenever you read or write variables that multiple 
threads might access, always wrap the code in a 
synchronized block.

(Following this rule will not magically make your code correct, 
and it is not always strictly necessary to write correct code. But 
it is usually a good idea.)



Race Conditions

When the result of running two (or more) threads 
depends on the relative timing of the executions.

- Can cause extremely subtle bugs!
- Bugs that seem to disappear when you look for them!



Race conditions

¨ Typical race condition: two processes wanting to change a 
stack at the same time. Or make conflicting changes to a 
database at the same time.

¨ Race conditions are bad news

¤ Race conditions can cause many kinds of bugs, not just the 
example we see here!

¤ Common cause for “blue screens”: null pointer exceptions, 
damaged data structures

¤ Concurrency makes proving programs correct much harder!
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Deadlock

Use synchronized blocks to avoid race conditions.

But locks are shared resources that can create their 
own problems. Like other resources: files, network 
sockets, etc.

If thread A holds a resource that thread B needs to 
continue, and thread B holds a different resource that 
thread A needs to continue, you have deadlock.



Dining philosopher problem Five philosophers 
sitting at a table.

Each repeatedly
does this:

1. think
2. eat

What do they eat?
spaghetti.

Need TWO forks 
to eat spaghetti!
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Dining philosopher problem Each does 
repeatedly :

1. think
2. eat (2 forks)

eat is then:
pick up left fork
pick up right fork
eat spaghetti
put down left fork
put down right fork

At one point, 
they all pick up 
their left forks

DEADLOCK!
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Dining philosopher problem
48

Simple solution to 
deadlock:
Number the forks. Pick 
up smaller one first

1. think
2. eat (2 forks)

eat is then:
pick up smaller fork
pick up bigger fork
eat spaghetti
put down bigger fork
put down smaller fork

2

1

4

3

5


