
Threads, Concurrency, and Parallelism

Lecture 24– CS2110 – Spring 2017

Concurrency & Parallelism

So far, our programs have been sequential: they do
one thing after another, one thing at a time.

Let’s start writing programs that do more than one
thing at at a time.

Concurrent Work

Concurrency in Multiple Machines

• Datacenters and clusters are
everywhere:

• Industrial:
Google, Microsoft,
Amazon, Apple,
Facebook…

• Scientific:
Several big clusters just
in Gates Hall.

Multicore Processors

Every desktop, laptop, tablet, and smartphone you
can buy has multiple processors.

Concurrency & Parallelism

Parallelism is about using additional computational
resources to produce an answer faster.

Concurrency is about controlling access by multiple
threads to shared resources.

A thread or thread of execution is a sequential stream
of computational work.

Java: What is a Thread?

¨ A separate “execution” that runs within a single program and
can perform a computational task independently and
concurrently with other threads

¨ Many applications do their work in just a single thread: the one
that called main() at startup
¤ But there may still be extra threads...
¤ ... Garbage collection runs in a “background” thread
¤ GUIs have a separate thread that listens for events and

“dispatches” calls to methods to process them
¨ Today: learn to create new threads of our own in Java

8

Thread

¨ A thread is an object that “independently computes”
¤ Needs to be created, like any object
¤ Then “started” --causes some method to be called. It runs

side by side with other threads in the same program; they
see the same global data

¨ The actual executions could occur on different CPU cores, but
but don’t have to
¤ We can also simulate threads by multiplexing a smaller

number of cores over a larger number of threads

9

Java class Thread

¨ threads are instances of class Thread
¤ Can create many, but they do consume space & time

¨ The Java Virtual Machine creates the thread that executes
your main method.

¨ Threads have a priority
¤ Higher priority threads are executed preferentially
¤ By default, newly created threads have initial priority equal

to the thread that created it (but priority can be changed)

10

Threads in Java

public static void main() {
...

}

Main Thread

CPUCPU

Threads in Java

public static void main() {
...

}

Main Thread

CPU

void run() {
...
}

void run() {
...
}

Threads in Java

public static void main() {
...

}

Main Thread

CPU

void run() {
...
}

void run() {
...
}

Starting a new Java thread

1. Make a new class that implements Runnable.
2. Put your code for the thread in the run() method.

Don’t call the run method directly!
3. Construct a new Thread with the Runnable:

SomeRunnable r = new SomeRunnable(...);
Thread t = new Thread(r);

4. Call the Thread’s start() method.

main main main

starting

check2

composite

check1

prime done!

time

Sequential version:

main

starting

check2 composite

check1

prime

done!

time

Parallel version:

Creating a new Thread (Method 1)
17

class PrimeThread extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a= a; this.b= b;

}

@Override public void run() {
//compute primes between a and b
...

}
}

PrimeThread p= new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

Call run() directly?
no new thread is used:

Calling p.start() will run it

Do this and
Java invokes run() in new thread

Creating a new Thread (Method 1)
18
class PTd extends Thread {

long a, b;

PTd (long a, long b) {
this.a= a; this.b= b;

}

@Override public void run() {
//compute primes between a, b
...

}
}

PTd p= new PTd (143, 195);
p.start();

… continue doing other stuff …

run()

PTd@20

PTd

getId()
getName

getPriority

a___ b___

Thread
start()
run()
sleep(long)
interrupt
isInterrupted
yield
isAliveCalls start() in

Thread partition

Calls run() to
execute in a
new Thread

and then
returns

method run()
executes in one

thread while
main program
coninues to

execute

Creating a new Thread (Method 2)
19

class PrimeRun implements Runnable {
long a, b;

PrimeRun(long a, long b) {
this.a= a; this.b= b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeRun p= new PrimeRun(143, 195);
new Thread(p).start();

Example
20 public class ThreadTest extends Thread {

int M= 1000; int R= 600;
public static void main(String[] args) {

new ThreadTest().start();
for (int h= 0; true; h= h+1) {

sleep(M);
System.out.format("%s %d\n", Thread.currentThread(), h);

}
}

@Override public void run() {
for (int k= 0; true; k= k+1) {

sleep(R);
System.out.format("%s %d\n", Thread.currentThread(), k);

}
}

We’ll demo this
with different
values of M and R.
Code will be on
course website

sleep(…) requires
a throws clause
—or else catch it

Example
21 public class ThreadTest extends Thread {

int M= 1000; int R= 600;
public static void main(String[] args) {

new ThreadTest().start();
for (int h= 0; true; h= h+1) {

sleep(M);
…format("%s %d\n", Thread.currentThread(), h);

}
}

@Override public void run() {
for (int k= 0; true; k= k+1) {

sleep(R);
…format("%s %d\n", Thread.currentThread(), k);

}
}

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[main,5,main] 1
Thread[Thread-0,5,main] 3
Thread[main,5,main] 2
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[main,5,main] 3
…

Thread name, priority, thread group

Example
22

waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
static boolean ok = true;

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.println("waiting...");
yield();

}
ok = false;

}

public void run() {
while (ok) {

System.out.println("running...");
yield();

}
System.out.println("done");

}
}

If threads happen to be sharing
a CPU, yield allows other waiting

threads to run.

Terminating Threads is Tricky

- The safe way: return from the run() method.
- Use a flag field to tell the thread when to exit.

- Avoid old and dangerous APIs: stop(), interrupt(),
suspend(), destroy()…
- These can leave the thread in a “broken” state.

Background (daemon) Threads

¨ In many applications we have a notion of “foreground” and
“background” (daemon) threads
¤ Foreground threads are doing visible work, like interacting

with the user or updating the display
¤ Background threads do things like maintaining data

structures (rebalancing trees, garbage collection, etc.) A
daemon can continue even when the thread that created it
stops.

¨ On your computer, the same notion of background workers
explains why so many things are always running in the task
manager.

24

Background (daemon) Threads

¨ demon: an evil spirit
¨ daemon. Fernando Corbato, 1963, first to use term. Inspired

by Maxwell’s daemon, an imaginary agent in physics and
thermodynamics that helped to sort molecules.

¨ from the Greek δαίμων. Unix System Administration
Handbook, page 403: … “Daemons have no particular bias
toward good or evil but rather serve to help define a person's
character or personality. The ancient Greeks' concept of a
"personal daemon" was similar to the modern concept of a
"guardian angel"—eudaemonia is the state of being helped
or protected by a kindly spirit. As a rule, UNIX systems seem to
be infested with both daemons and demons.

25

Producer & Consumer

producer consumer

generate a prime;
queue.add(p);

q = queue.remove();
System.out.println(q);

queue

Producer & Consumers

producer
consumers

generate a prime;
queue.add(p);

q = queue.remove();
System.out.println(q);

queue

q = queue.remove();
System.out.println(q);

q = queue.remove();
System.out.println(q);

Timing is Everything

if (!q.isEmpty()) {
long p = q.remove();

if (!q.isEmpty()) {
long p = q.remove();

Thread 1 Thread 2

A Fortunate Interleaving

if (!q.isEmpty()) {
long p = q.remove();

if (!q.isEmpty()) {
long p = q.remove();

time

queue length: 1

queue length: 0

queue length: 0

Condition is true!
Remove an element.

Condition is false.
Do nothing.

Thread 1 Thread 2

Another Fortunate Interleaving

if (!q.isEmpty()) {
long p = q.remove();

if (!q.isEmpty()) {
long p = q.remove();

time

queue length: 1

queue length: 0

queue length: 0

Thread 1 Thread 2

An Unfortunate Interleaving

if (!q.isEmpty()) {

long p = q.remove();

if (!q.isEmpty()) {

long p = q.remove();

time

queue length: 1

queue length: 1

NoSuchElementException!

Thread 1 Thread 2

queue length: 1

queue length: 0

Condition is true.

Condition is still true.

Remove an element.

Beginning to think about
avoiding race conditions

32

You know that race conditions can create problems:

Basic idea of race condition: Two different threads access
the same variable in a way that destroys correctness.

¨ Process t1 Process t2
… ...
x= x + 1; x= x + 1;

But x= x+1; is not an
“atomic action”: it
takes several step

Two threads may want to use the same stack, or
Hash table, or linked list, or … at the same time.

Synchronization

¨ Java has one primary tool for preventing race conditions.
you must use it by carefully and explicitly – it isn’t automatic.
¤ Called a synchronization barrier
¤ Think of it as a kind of lock

n Even if several threads try to acquire the lock at once,
only one can succeed at a time, while others wait

n When it releases the lock, another thread can acquire it
n Can’t predict the order in which contending threads get

the lock but it should be “fair” if priorities are the same

33

Synchronized Blocks

a.k.a. locks or mutual exclusion

At most one thread can be in a synchronized (obj) block
for the same obj at any given time.

synchronized (obj) {
...

}

Synchronized Blocks

a.k.a. locks or mutual exclusion

At most one consumer thread can be trying to remove
something from the queue at a time.

synchronized (q) {
if (!q.isEmpty()) {
q.remove();

}
}

Solution: use with synchronization
36

private Stack<String> stack= new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
String s= stack.pop();

}
//do something with s...

}

• Put critical operations in a synchronized block
• Can’t be interrupted by other synchronized blocks
on the same object
• Can run concurrently with non-synchronized code
• Or code synchronized on a different object!

synchronized block

Example: a lucky scenario
37

private Stack<String> stack= new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s= stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops ⇒ stack is now empty
3. thread B tests stack.isEmpty()⇒ true
4. thread B just returns – nothing to do

What Can i Be at the End?

i += 1; i += 1;

Initially, i = 0

Finally, i = ?

Thread 1 Thread 2

What Can i Be at the End?

i += 1; i += 1;

Initially, i = 0

Finally, i = 2 or 1!

Thread 1 Thread 2

What Can i Be at the End?

tmp = load i;
tmp = tmp + 1;
store tmp to i;

Initially, i = 0

Thread 1 Thread 2

tmp = load i;
tmp = tmp + 1;
store tmp to i;

What Can i Be at the End?

tmp = tmp + 1;
store tmp to i;

Initially, i = 0

Thread 1 Thread 2

tmp = load i;

tmp = tmp + 1;
store tmp to i;

tmp = load i;

Finally, i = 1
time

Load 0 from memory

Load 0 from memory

Store 1 to memory

Store 1 to memory

A Pretty Good Rule

Whenever you read or write variables that multiple
threads might access, always wrap the code in a
synchronized block.

(Following this rule will not magically make your code correct,
and it is not always strictly necessary to write correct code. But
it is usually a good idea.)

Race Conditions

When the result of running two (or more) threads
depends on the relative timing of the executions.

- Can cause extremely subtle bugs!
- Bugs that seem to disappear when you look for them!

Race conditions

¨ Typical race condition: two processes wanting to change a
stack at the same time. Or make conflicting changes to a
database at the same time.

¨ Race conditions are bad news

¤ Race conditions can cause many kinds of bugs, not just the
example we see here!

¤ Common cause for “blue screens”: null pointer exceptions,
damaged data structures

¤ Concurrency makes proving programs correct much harder!

44

Deadlock

Use synchronized blocks to avoid race conditions.

But locks are shared resources that can create their
own problems. Like other resources: files, network
sockets, etc.

If thread A holds a resource that thread B needs to
continue, and thread B holds a different resource that
thread A needs to continue, you have deadlock.

Dining philosopher problem Five philosophers
sitting at a table.

Each repeatedly
does this:

1. think
2. eat

What do they eat?
spaghetti.

Need TWO forks
to eat spaghetti!

46

Dining philosopher problem Each does
repeatedly :

1. think
2. eat (2 forks)

eat is then:
pick up left fork
pick up right fork
eat spaghetti
put down left fork
put down right fork

At one point,
they all pick up
their left forks

DEADLOCK!

46

46

Dining philosopher problem
48

Simple solution to
deadlock:
Number the forks. Pick
up smaller one first

1. think
2. eat (2 forks)

eat is then:
pick up smaller fork
pick up bigger fork
eat spaghetti
put down bigger fork
put down smaller fork

2

1

4

3

5

