KONINGSBERGA

‘Vn-’

e fama s -

Lcre :; -
GRAPHS CS2110 Fall 2017

These aren't the graphs we're looking for

$30,000
e

$30,000

Graphs

A graph is a data
structure
A graph has

a set of vertices

a set of edges
between vertices

Graphs are a
generalization of trees

O

O

\/

M)
U

/)
U

(

©

©

This is a graph

&
e
. -
WY WAOS
wmesurns
...a
ﬁ

3
s

AL ORI TV MO,
NOLAYS) Ivay

i

o -
-
o
@

MY LLENY
Lol)
AV BN

A ane

8
o
c
s
=
5
>
=

o
(c)
on*
(0]

%

H

:

Another transport graph
]

s St FALL CREEK '&;—“ Ithaca Falls Rl Creek D g,w
o
¢ Natural Area /A
E Lincoln St S
t > $ B
P S
% f Queen St %)
s 2 2 e
®? EJaySt © % Me
2 >
King St ®
(9]
3 <5 s Corne
: E Lewis St c 2 Botani
(2]
2 3 o Garder
P -
= 1 o — T —s
S E Tompkins St e , _ [
9 9)‘ l\—" ‘
3 - — |
Tower Rd Towe
E Yates St o p
) m =
. o aQ
z T & ﬁ% 8 I
> 5 <
) 5 (:;) = L :g (%))<>
E Marshall St § - % Cornell Ave i 3 ® L
(%)) g o
1 5 & =
o us Rd s
Farm St R - Camp
Cy o
S \ <
1 Sy 4 0@:"\“? 2 R
Ve o S i
O = choellkopf Field
< L Comnell Law School @ S @ Bucknell vs Cornell '
(%) gv) . S ‘.-\\ ,"” . e _— e 'S o ~ P
Y ~@ CascadillaiGorge Trail - /é_paq,/i IR Sy vioy RS
E Court St /——/ 'teek %
) Williams St N \:
z 3 ;
.:! -C-‘ m Oak AP
g 3 Google 2 :
A on g g Dryden Rd Maple AVe\

This is a graph
—

A Social Network Graph

Republic of Letters

Locke’s (blue) and Voltaire’s (yellow) correspondence.
Only letters for which complete location information is available are shown.
Data courtesy the Electronic Enlightenment Project, University of Oxford.

Viewing the map of states as a graph

http://www.cs.cmu.edu/~bryant /boolean/maps.html

Each state 1s a point on the graph, and neighboring states are
connected by an edge.

Do the same thing for a map of the world showing countries

A circuit graph (flip-flop)

IEEEERL Rt 64

e
I

This is not a graph, this is a cat

This is a graph

This is a graph(ical model) that

has learned to recognize cats

Diagonal
Line

TN7
S
oxo
b

L ®
XA NTPANS
e Ve . I at . W
"0'“‘,’0" m?"\\y
V/ \ y/ A": l‘i A‘ L7
(Oe— NEAOKE
7> I X6
N :o; ‘\Y ‘ "‘[',
% \'0‘4'- .o
28 Y ha
A 4'.L A
N \

o%o

Graphs

O
Ay

g)

0
A4

O
¢/

(D
G/

O
¢/

WJ ¢/

0O L))

0 L))
A4

0
WJ

0O
A4

g)

Undirect graphs

A undirected graph is a pair (V, E) where
Vis a (finite) set
E is a set of pairs (1, v) where u,y € V
Often require u # v (i.e. no self-loops)

Element of V'is called a vertex or node

Element of £'is called an edge orarc |y — 4 g ¢ D, E}

E={(4,B), (4, O),
B D
V] = size of V, often denoted by # (8, 0), (C. D);
[E| = size of E, often denoted by V=5
E| = 4

Directed graphs

A directed graph (digraph) is a lot like
an undirected graph
Vis a (finite) set
E is a set of ordered pairs (u, v) where
uy ey
Every undirected graph can be easily
converted to an equivalent directed

graph via a simple transformation: V=1{4,B,C,D,E}
Replace every undirected edge with E={(4, (), (B, A),

two directed edges in opposite 8’; CC%,} (C, D),
directions =5 ;

... but not vice versa IE| =5

Graph terminology

Vertices u and v are called

the source and sink of the directed edge (u, V),
respectively

the endpoints of (u, v) or {u, v}

Two vertices are adjacent if they are
connected by an edge

The outdegree of a vertex u in a directed
graph is the number of edges for which u is the
source

The indegree of a vertex v in a directed graph
is the number of edges for which v is the sink

The degree of a vertex u in an undirected
graph is the number of edges of which u is an
endpoint

More graph terminology

Path
A,CD

A path is a sequence vy,v;,,,...,v, of vertices
such thatfor 0 <i <p,

(v;, vii1) EE if the graph is directed

{v;, Vi1 1} EE if the graph is undirected
The length of a path is its number of edges
A path is simple if it doesn’t repeat any vertices DAG
A cycle is a path vy, v, v, ..., Vv, such that vy =v

V4
A cycle is simple if it does not repeat any

vertices except the first and last N
A graph is acyclic if it has no cycles

A directed acyclic graph is called a DAG

Not a DAG

Is this a DAG?

Intuition:
If it’s a DAG, there must be a vertex with indegree zero

This idea leads to an algorithm

A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

Is this a DAG?

Intuition:
If it’s a DAG, there must be a vertex with indegree zero

This idea leads to an algorithm

A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

Is this a DAG?

Intuition:
If it’s a DAG, there must be a vertex with indegree zero

This idea leads to an algorithm

A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

Is this a DAG?

Intuition:
If it’s a DAG, there must be a vertex with indegree zero

This idea leads to an algorithm

A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

Is this a DAG?

Intuition:
If it’s a DAG, there must be a vertex with indegree zero

This idea leads to an algorithm

A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

Is this a DAG?

Intuition:
If it’s a DAG, there must be a vertex with indegree zero

This idea leads to an algorithm

A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

Is this a DAG?

Intuition:
If it’s a DAG, there must be a vertex with indegree zero

This idea leads to an algorithm

A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

Topological sort

We just computed a topological sort of the DAG

This is a numbering of the vertices such that all edges go
from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints

Topological sort

k= 0;
// inv: k nodes have been given numbers in 1.k in such a way that
if n1 <= n2, there is no edge from n2 to nl.
while (there is a node of in-degree 0) {
Let n be a node of in-degree O;
Give it number k;

Delete n and all edges leaving it from the graph.
k= k+1;

1. Abstract algorithm

2. Don’t really want to change the
graph.

3. Will have to mvent data structures
to make 1t efficient.

Graph coloring

A coloring of an undirected graph is an assignment of
a color to each node such that no two adjacent
vertices get the same color

How many colors are needed to color this graph?

Graph coloring

A coloring of an undirected graph is an assignment
of a color to each node such that no two adjacent
vertices get the same color

How many colors are needed to color this graph?

An application of coloring

Vertices are tasks

Edge (u, v) is present if tasks # and v each require access to
the same shared resource, and thus cannot execute
simultaneously

Colors are time slots to schedule the tasks

Minimum number of colors needed to color the graph =
minimum number of time slots required

Planarity
o

o1 A graph is planar if it can be drawn in the plane without any
edges crossing

o Is this graph planar?

Planarity
o

o1 A graph is planar if it can be drawn in the plane
without any edges crossing

01 Is this graph planare
o Yes!

Planarity
o

o1 A graph is planar if it can be drawn in the plane
without any edges crossing

01 Is this graph pldme
o Yesl!

Detecting Planarity

Kuratowski's Theorem:

Ks

K3,3

A graph is planar if and only if it does not contain a
copy of K5 or Kj ;5 (possibly with other nodes along

the edges shown)

Detecting Planarity

In the early 1970’s, Cornell Prof John Hopcroft spent a sabbatical
at Stanford and worked with PhD student Bob Tarjan. They
developed the first linear-time algorithm for testing whether a
graph was planar. They later received the ACM Turing Award for
their work on algorithms.

Tarjan was hired at one point in the 1970’s into our department,
but the Ithaca weather was too depressing for him and he left for
Princeton.

Coloring a graph

How many colors are
needed to color the
states so that no two
adjacent states have the

same color?
Asked since 1852

1879: Kemp publishes a
proof that only 4 colors
are needed!

1880: Julius Peterson
finds a flaw in Kemp's
proof...

Four Color Theorem

Every planar graph is 4-colorable [Appel & Haken, 1976]

The proof rested on checking that 1,936 special graphs had a certain property.
They used a computer to check that those 1, 936 graphs had that property!

Basically the first time a computer was needed to check something. Caused a lot
of controversy.

Gries looked at their computer program, a recursive program written in the
assembly language of the IBM 7090 computer, and found an error, which was
safe (it said something didn’t have the property when it did) and could be fixed.
Others did the same.

Since then, there have been improvements. And a formal proof has even been
done in the Coq proof system

Bipartite graphs

A directed or undirected graph is bipartite if the vertices can
be partitioned into two sets such that no edge connects two
vertices in the same set

The following are equivalent
G is bipartite
G is 2-colorable
G has no cycles of odd length

Traveling salesperson

Find a path of minimum distance that visits every city

Representations of graphs

1 2
4 3
Adjacency List Adjacency Matrix

1 g2 pa 123 4
10 1 0 1
2 ‘ma3 20 0 1 0
30 0 0O
40 1 1 O

OE—E—EN

Adjacency matrix or adjacency List?

n = number of vertices 12 3 4
m = number of edges 10 1 0
d(u) = degree of u = no. of edges leaving u 20 0 1
Adjacency Matrix 30 0 0
40 1 1

Uses space O(n?)

Enumerate all edges in time O(#?)

Answer “Is there an edge from u to v?” in O(1) time
Better for dense graphs (lots of edges)

Adjacency matrix or adjacency list?

n = humber of vertices

1 “me2° mmgd
Adjacency List

Uses space O(e + n) m

Enumerate all edges in time O(e + n)

e = number of edges

d(u) = degree of u = no. edges leaving u

Answer “Is there an edge from u to v?” in O(d(u)) time
Better for sparse graphs (fewer edges)

Graph algorithms

Search
Depth-first search
Breadth-first search

Shortest paths
Dijkstra's algorithm

Minimum spanning trees
Jarnik/Prim/Dijkstra algorithm

Kruskal's algorithm

