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Abstract vs concrete data structures
[ |
o Abstract data structures are interfaces

O they specify only interface (method names and specs)
[ not implementation (method bodies, fields, ...)

o Concrete data structures are classes. Abstract data
structures can have multiple possible implementations
by different concrete data structures.

HEAPS AND
PRIORITY QUEUES
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Abstract vs concrete data structures
[

0 interface List defines an “abstract data type”.

0 It has methods: add, get, remove, ... - Concrete Dqta Types

0 Various classes ("concrete data types") implement List:

Arraylist LinkedList
Backing storage: [I{f-}) chained nodes
CT-CICRZD] O(n) O(n)
CEEICAZIN O(n) Oo(1)
CLEIGAZ1] O(1) Oo(1)

o(1) O(n)

CEI() O(1) o(1)

Oo(1) Oo(1)

o

Concrete data structures Heaps

EmTe EmEe
o Array * A heap is a binary tree with certain properties (it's a
o LinkedList (singley-linked, doubly-linked) concrete data structu‘re) ) _
* Heap Order Invariant: every element in the tree is
o Trees (binary, general) >= its parent
0 Heaps

« Complete Binary Tree: every level of the tree
(except last) is completely filled, there are no holes

Do not confuse with heap memory, where the Java virtual

machine allocates space for objects — different usage of the
word heap




Order Property
[

Every element is >= its parent

(2] [ [ [ [

Note: 19, 20°< 35: Smaller elements
can be deeper in the tree!

Completeness Property
[

Not a heap because it

has two holes
H‘E-H//

Not a heap because: missing nodes

-

* missing a node on level 2

« bottom level nodes are not as far left as possible

add (e)
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Completeness Property

Every level (except last)
completely filled.

Nodes on bottom level
are as far left as

possible.
Heaps
| 10 ]

* A heap is a binary tree with certain properties (it's a
concrete data structure)
* Heap Order Invariant: every element in the tree is
>= jts parent
« Complete Binary Tree: every level of the tree
(except last) is completely filled, there are no holes
* A heap implements two key methods:
« add(e): adds a new element to the heap
« poll(): deletes the least element and returns it

add (e)

=] [ [ [0 [ @

1. Putin the new element in a new node




add ()

2. Bubble new element up if less than parent
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add ()

2] 3] (5] (7] (2] [

2. Bubble new element up if less than parent

add ()

add (e)

* Add e at the leftmost empty leaf
* Bubble e up until it no longer violates heap order

* The heap invariant is maintained!

add(e) to a tree of size n

 Time is O(log n), since the tree is balanced

—size of tree is exponential as a function of depth

—depth of tree is logarithmic as a function of size

poll()




Q

1. Save top element in a local variable
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[21] JﬂL E E
2] (41 (] [ 2] [

2. Assign last value to the root, delete last value from heap

poll ()

] (41 (1 [ [

3. Bubble root value down

poll()

A R Ak
2] (31 (5 [0 2]

3. Bubble root value down

] (41 (1 [ [

3. Bubble root value down

poll()

» Save the least element (the root)
» Assign last element of the heap to the root.
* Remove last element of the heap.

* Bubble element down —always with smaller child, until
heap invariant is true again.

The heap invariant is maintained!
* Return the saved element

Time is O(log n), since the tree is balanced




Implementing Heaps
2 ]

public class HeapNode<E> ({
private E value;
private HeapNode left;
private HeapNode right;

Numbering the nodes in a heap

Number node starting at
root row by row, left to
right

Level-order traversal
7ﬁﬂs§ﬁsii

Children of node k are nodes 2k+1 and 2k+2
Parent of node k is node (k-1)/2

s [19] 6 [35]

add() --assuming there is space

/** An instance of a heap */
class Heap<E> {
E[] b= new E[50];
int n= 0;

// heap is b[0..n-1]
// heap invariant is true

/** Add e to the heap */
public void add(E e) {
b[n]= e;
n=n + 1;
bubbleUp(n - 1); // given on next slide
}
}
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Implementing Heaps
]

public class Heap<E> {
private E[] heap;

Store a heap in an array (or Arraylist) b!
* Heap nodes in b in order, going across each level from
left to right, top to bottom
« Children of b[k] are b[2k + 1] and b[2k + 2]
« Parent of b[k] is b[(k — 1)/2]
to parent

8
[T 1]

Tree structure is implicit.
No need for explicit links!

0123¥567
I

to children

add () . Remember, heap is in b[0..n-1]
| 30 ]

class Heap<E> {
/** Bubble element #k up to its position.
* Pre: heap inv holds except maybe for k */
private void bubbleUp(int k) {
int p= (k-1)/2;
// inv: p is parent of k and every elmnt
// except perhaps k is >= its parent
while (k > 0 && b[k].compareTo(b[p]) < ©)
swap(b[k], b[pl);
k= p;
p= (k-1)/2;




poll () . Remember, heap is in b[0..n-1]
==

/** Remove and return the smallest element
* (return null if list is empty) */
public E poll() {
if (n == @) return null;

E v= b[o]; // smallest value at root.
n=n - 1; // move last

b[@]= b[n]; // element to root
bubbleDown(®@);

return v;

/** Bubble root down to its heap position.
Pre: b[@..n-1] is a heap except maybe b[0] */
mprivate void bubbleDown() {
int k= 0;
int c= smallerChild(k, n);
// inv: b[@..n-1] is a heap except maybe b[k] AND
// b[c] is b[k]’s smallest child
while (¢ ¢ n 8& b[k].compareTo(b[c]) > @) {
swap(b[k], b[c]);
k= c;
c= smallerChild(k, n);

Some Abstract Data Types
==

* List
¢ Stack (LIFO) implemented using a List
— allows only add (0,val), remove (0) (push, pop)
* Queve (FIFO) implemented using a List
— allows only add (n,val), remove (0) (enqueue, dequeue)
Both efficiently implementable using a
singly linked list with head and tail

head
tail

* PriorityQueve
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c’s smaller child

/** Tree has n node.
* Return index of smaller child of node k
(2k+2 if k >= n) */
public int smallerChild(int k, int n) {
int c= 2*k + 2; // k’s right child
if (c >= n || b[c-1].compareTo(b[c]) < @)
c= c-1;
return c;

Priority Queue

* Data structure in which data items are Comparable

* Smaller elements (determined by compareTo () ) have higher
priority

* remove () return the element with the highest priority = least
element in the compareTo () ordering

* break ties arbitrarily
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Many uses of priority queues (& heaps) java.util.PriorityQueue<E>
==
wnwmv interface PriorityQueue<E> { TIM
boolean add(E e) {...} //insert e. log
Surface simplification [Garland and Heckbert 1997] void clear() {...} //remove all elems.

. . . . . E peek coo return min elem. constan
Event-driven simulation: customers in a line P <> { } /7

E poll() {...} //remove/return min eleml log

o

Collision detection: "next time of contact" for colliding bodies

boolean contains(E e linear
o Graph searching: Dijkstra's algorithm, Prim's algorithm ( )
. boolean remove(E e) linear
o Al Path Planning: A* search
L L . int size() {...} constan
o Statistics: maintain largest M values in a sequence .
. o . Iterator<E> iterator()
1 Operating systems: load balancing, interrupt handling } IF implemented with a heap
o Discrete optimization: bin packing, scheduling
o1 College: prioritizing assignments for multiple classes.
Priority queues as lists Priority queues as heaps
| o | o
. Maintain as a list « A heap is can be used to implement priority queues
-add()  putnew elementat front- O(1) - Gives better complexity than either ordered or
- poll() must search the list — O(n) unordered list implementation:
- peek() must search the list — O(n) -add(): O(logn) (n is the size of the heap)
* Maintain as an ordered list “peek(): O(1)
—add() must search the list — O(n) -poll(): O(logn)
- poll() min element at front — O(1)

- peek() o(1)

Can we do better?

What if the priority is independent from the
value?
| 41 ]
Separate priority from value and do this:
add(e, p); //add element e with priority p (a double)

THIS IS EASY!
Be able to change priority

change(e, p); //change priority of e to p
THIS IS HARD!
Big question: How do we find e in the heap?

Searching heap takes time proportional to its size! No good!
Once found, change priority and bubble up or down. OKAY

Assignment A6: implement this heap! Use a second data
structure to make change-priority expected log n time




