10/16/17

Abstract vs concrete data structures
[ |
o Abstract data structures are interfaces

O they specify only interface (method names and specs)
[ not implementation (method bodies, fields, ...)

o Concrete data structures are classes. Abstract data
structures can have multiple possible implementations
by different concrete data structures.

HEAPS AND
PRIORITY QUEUES

Lecture 16
CS2110 Fall 2017

Abstract vs concrete data structures
[

0 interface List defines an “abstract data type”.

0 It has methods: add, get, remove, ... - Concrete Dqta Types

0 Various classes ("concrete data types") implement List:

Arraylist LinkedList
Backing storage: [I{f-}) chained nodes
CT-CICRZD] O(n) O(n)
CEEICAZIN O(n) Oo(1)
CLEIGAZ1] O(1) Oo(1)

o(1) O(n)

CEI() O(1) o(1)

Oo(1) Oo(1)

o

Concrete data structures Heaps

EmTe EmEe
o Array * A heap is a binary tree with certain properties (it's a
o LinkedList (singley-linked, doubly-linked) concrete data structu‘re) ) _
* Heap Order Invariant: every element in the tree is
o Trees (binary, general) >= its parent
0 Heaps

« Complete Binary Tree: every level of the tree
(except last) is completely filled, there are no holes

Do not confuse with heap memory, where the Java virtual

machine allocates space for objects — different usage of the
word heap




Order Property
[

Every element is >= its parent

(2] [ [ [ [

Note: 19, 20°< 35: Smaller elements
can be deeper in the tree!

Completeness Property
[

Not a heap because it

has two holes
H‘E-H//

Not a heap because: missing nodes

-

* missing a node on level 2

« bottom level nodes are not as far left as possible

add (e)

10/16/17

Completeness Property

Every level (except last)
completely filled.

Nodes on bottom level
are as far left as

possible.
Heaps
| 10 ]

* A heap is a binary tree with certain properties (it's a
concrete data structure)
* Heap Order Invariant: every element in the tree is
>= jts parent
« Complete Binary Tree: every level of the tree
(except last) is completely filled, there are no holes
* A heap implements two key methods:
« add(e): adds a new element to the heap
« poll(): deletes the least element and returns it

add (e)

=] [ [ [0 [ @

1. Putin the new element in a new node




add ()

2. Bubble new element up if less than parent

10/16/17

add ()

2] 3] (5] (7] (2] [

2. Bubble new element up if less than parent

add ()

add (e)

* Add e at the leftmost empty leaf
* Bubble e up until it no longer violates heap order

* The heap invariant is maintained!

add(e) to a tree of size n

 Time is O(log n), since the tree is balanced

—size of tree is exponential as a function of depth

—depth of tree is logarithmic as a function of size

poll()




Q

1. Save top element in a local variable

10/16/17

[21] JﬂL E E
2] (41 (] [ 2] [

2. Assign last value to the root, delete last value from heap

poll ()

] (41 (1 [ [

3. Bubble root value down

poll()

A R Ak
2] (31 (5 [0 2]

3. Bubble root value down

] (41 (1 [ [

3. Bubble root value down

poll()

» Save the least element (the root)
» Assign last element of the heap to the root.
* Remove last element of the heap.

* Bubble element down —always with smaller child, until
heap invariant is true again.

The heap invariant is maintained!
* Return the saved element

Time is O(log n), since the tree is balanced




Implementing Heaps
2 ]

public class HeapNode<E> ({
private E value;
private HeapNode left;
private HeapNode right;

Numbering the nodes in a heap

Number node starting at
root row by row, left to
right

Level-order traversal
7ﬁﬂs§ﬁsii

Children of node k are nodes 2k+1 and 2k+2
Parent of node k is node (k-1)/2

s [19] 6 [35]

add() --assuming there is space

/** An instance of a heap */
class Heap<E> {
E[] b= new E[50];
int n= 0;

// heap is b[0..n-1]
// heap invariant is true

/** Add e to the heap */
public void add(E e) {
b[n]= e;
n=n + 1;
bubbleUp(n - 1); // given on next slide
}
}

10/16/17

Implementing Heaps
]

public class Heap<E> {
private E[] heap;

Store a heap in an array (or Arraylist) b!
* Heap nodes in b in order, going across each level from
left to right, top to bottom
« Children of b[k] are b[2k + 1] and b[2k + 2]
« Parent of b[k] is b[(k — 1)/2]
to parent

8
[T 1]

Tree structure is implicit.
No need for explicit links!

0123¥567
I

to children

add () . Remember, heap is in b[0..n-1]
| 30 ]

class Heap<E> {
/** Bubble element #k up to its position.
* Pre: heap inv holds except maybe for k */
private void bubbleUp(int k) {
int p= (k-1)/2;
// inv: p is parent of k and every elmnt
// except perhaps k is >= its parent
while (k > 0 && b[k].compareTo(b[p]) < ©)
swap(b[k], b[pl);
k= p;
p= (k-1)/2;




poll () . Remember, heap is in b[0..n-1]
==

/** Remove and return the smallest element
* (return null if list is empty) */
public E poll() {
if (n == @) return null;

E v= b[o]; // smallest value at root.
n=n - 1; // move last

b[@]= b[n]; // element to root
bubbleDown(®@);

return v;

/** Bubble root down to its heap position.
Pre: b[@..n-1] is a heap except maybe b[0] */
mprivate void bubbleDown() {
int k= 0;
int c= smallerChild(k, n);
// inv: b[@..n-1] is a heap except maybe b[k] AND
// b[c] is b[k]’s smallest child
while (¢ ¢ n 8& b[k].compareTo(b[c]) > @) {
swap(b[k], b[c]);
k= c;
c= smallerChild(k, n);

Some Abstract Data Types
==

* List
¢ Stack (LIFO) implemented using a List
— allows only add (0,val), remove (0) (push, pop)
* Queve (FIFO) implemented using a List
— allows only add (n,val), remove (0) (enqueue, dequeue)
Both efficiently implementable using a
singly linked list with head and tail

head
tail

* PriorityQueve

10/16/17

c’s smaller child

/** Tree has n node.
* Return index of smaller child of node k
(2k+2 if k >= n) */
public int smallerChild(int k, int n) {
int c= 2*k + 2; // k’s right child
if (c >= n || b[c-1].compareTo(b[c]) < @)
c= c-1;
return c;

Priority Queue

* Data structure in which data items are Comparable

* Smaller elements (determined by compareTo () ) have higher
priority

* remove () return the element with the highest priority = least
element in the compareTo () ordering

* break ties arbitrarily




10/16/17

Many uses of priority queues (& heaps) java.util.PriorityQueue<E>
==
wnwmv interface PriorityQueue<E> { TIM
boolean add(E e) {...} //insert e. log
Surface simplification [Garland and Heckbert 1997] void clear() {...} //remove all elems.

. . . . . E peek coo return min elem. constan
Event-driven simulation: customers in a line P <> { } /7

E poll() {...} //remove/return min eleml log

o

Collision detection: "next time of contact" for colliding bodies

boolean contains(E e linear
o Graph searching: Dijkstra's algorithm, Prim's algorithm ( )
. boolean remove(E e) linear
o Al Path Planning: A* search
L L . int size() {...} constan
o Statistics: maintain largest M values in a sequence .
. o . Iterator<E> iterator()
1 Operating systems: load balancing, interrupt handling } IF implemented with a heap
o Discrete optimization: bin packing, scheduling
o1 College: prioritizing assignments for multiple classes.
Priority queues as lists Priority queues as heaps
| o | o
. Maintain as a list « A heap is can be used to implement priority queues
-add()  putnew elementat front- O(1) - Gives better complexity than either ordered or
- poll() must search the list — O(n) unordered list implementation:
- peek() must search the list — O(n) -add(): O(logn) (n is the size of the heap)
* Maintain as an ordered list “peek(): O(1)
—add() must search the list — O(n) -poll(): O(logn)
- poll() min element at front — O(1)

- peek() o(1)

Can we do better?

What if the priority is independent from the
value?
| 41 ]
Separate priority from value and do this:
add(e, p); //add element e with priority p (a double)

THIS IS EASY!
Be able to change priority

change(e, p); //change priority of e to p
THIS IS HARD!
Big question: How do we find e in the heap?

Searching heap takes time proportional to its size! No good!
Once found, change priority and bubble up or down. OKAY

Assignment A6: implement this heap! Use a second data
structure to make change-priority expected log n time




