CS2110. GUIS: Listening to Events

Also anonymous classes versus Java 8 functions

Lunch with instructors:
Visit Piazza pinned post to reserve a place

Download demo zip file from course website, look at demos
of GUI things: sliders, scroll bars, listening to events, etc.We' ||
update it after today’s lecture.

A4 deadline for submissions: now Sun, |5 Oct.
A4 deadline for late submissions unchanged:Tues, | 7 Oct.

Tuesday is the drop and grade-change deadline.

Consider taking course S/U (if allowed) to relieve stress.
Need a letter grade of C- or better to get an S.

Right now: |4 AUDIT, 24 S/U

Making use of the recursive definition of a tree
1n a recursive function

— St

trees

for (SharingTree c : st.children) {

. (in some cases it may
if (c.root==p){...}

be ok, but rarely)

}

Testing c.root or any field of c complicates the picture terribly.
Destroys the natural recursive definition. Don'’t do it!

2

Writing recursive methods

Piazza question about function depth:
“But I don’t understand what to test before running depth
recursively on all the children.”

“If I just return 1+c.depth(p) you never reach the return -1
statement. How can I test whether or not to return -1
without using contains?”

Writing recursive methods

Have a foreach loop to process the children. Consider first iteration of
the loop, which processes the first child, say cl. You have a call, say,

int d= c1.depth(p);
ACCORDING TO SPEC OF FUNCTION DEPTH:

What is stored in d if p is not in subtree c1? | -1
What 1s stored in d if p IS in subtree c1?

And what should the code do in each case? Do nothing more

1n this iteration

Not sure I follow. I understand the questions but am unsure
how to answer those questions without using contains.

/**Return the depth at which p occurs in this SharingTree,
* or -1 1f p 1s not in the SharingTree. */
public int depth(Person p)

4

Stepwise refinement

There 1s a note in the A4 FAQs about stepwise refinement. READ IT!
We will write a JavaHypertext entry for it.

First described by Niklaus Wirth 1n a paper in 1971.

“A sequence of design decisions concerning the decomposition of
tasks into subtasks and data into data structures.”

/**Return the depth at which p occurs 1n this SharingTree,
* or -1 if p 1s not in the SharingTree. */

public int depth(Person p) {
if (root == p) return 0;

for each child of this SharingTree:
What should we do if p is in the child’s subtree?
and what should we do 1f 1t 1sn’t?

Answer these questions in English first, not Java!

Checkers.java

mainBox

/\

boardBox infoBox
T~ //

JButton

row ... row
JButton
JButton

Square ... Square Square ... Square JLabel
JLabel
JLabel

Layout Manager for Checkers
game has to process a tree

boardBox: vertical Box
pack(): Traverse the tree, row: horizontal Box
determining the space required Square: Canvas or JPanel
for each component infoBox: vertical Box

S

Listening to events: mouse click, mouse movement
into or out of a window, a keystroke, etc.

* An event 1s a mouse click, a mouse movement into or out of a
window, a keystroke, etc.

» To be able to “listen to” a kind of event, you have to:

1. Have some class C implement an interface IN that 1s
connected with the event.

2. In class C, override methods required by interface IN; these
methods are generally called when the event happens.

3. Register an object of class C as a listener for the event. That
object’s methods will be called when event happens.

We show you how to do this for clicks on buttons, clicks on
components, and keystrokes.

What is a JButton?
Instance: associated with a “button” on the GUI,
which can be clicked to do something

jb1= new JButton() // b1 has no text on it

1b2= new JButton(“first”) // ;b2 has label “first” on it

jb2.1sEnabled() // true 1ff a click on button can be
// detected

jb2.setEnabled(b); // Set enabled property

jb2.addActionListener(object); // object must have a method,
// which 1s called when button jb2 clicked (next page)

At least 100 more methods; these are most important

JButton is in package javax.swing

8

Listening to a JButton

|. Implement interface ActionListener:
public class C extends JFrame
implements ActionListener { ... }

So, C must implement actionPerformed, and 1t will be called
when the button 1s clicked

public interface ActionListener extends ... {
/** Called when an action occurs. *
public abstract void actionPerformed(ActionEvent e);

;

Listening to a JButton

|. Implement interface ActionListener:
public class C extends JFrame
implements ActionListener { ... }

2.In C override actionPerformed --called when button is clicked:
/** Process click of button */
public void actionPerformed(ActionEvent e) { ... }

public interface ActionListener extends EventListener {
/** Called when an action occurs. */
public abstract void actionPerformed(ActionEvent e);

;

Listening to a JButton

|. Implement interface ActionListener:
public class C extends JFrame
implements ActionListener { ... }

2.In C override actionPerformed --called when button is clicked:
/** Process click of button */
public void actionPerformed(ActionEvent e) { ... }

3. Add an instance of class C an “action listener’ for button:
button.addActionListener(this);

Method Jbutton.addActionListener
public void addActionListener(ActionListener 1)

/** Object has two buttons. Exactly one is enabled. */ | ButtonDemol

class ButtonDemol extends JFrame

implements ActionListener { red: listening
/** exactly one of eastB, westB is enabled */ blue: placing
JButton westB= new JButton("'west");
JButton eastB= new JButton("east"); O O O mouse ...
public ButtonDemol(String t) { N eact
super(t);
add(westB, BLayout. WEST);
add(eastB, BLayout, EAST); public void actionPerformed
westB.setEnabled(false); bool b(Act1onEvent €) 1
: oolean b=
castB.setEnabled(true); eastB.isEnabled():
westB.addActionListener(this); .
eastB.addActionListener((this)); eastB.setEnabled(!b);
.. westB.setEnabled(b);
pack(); setVisible(true); !
} |

Listening to a Button

A JPanel that is painted MouseDemo?

e The JFrame has a JPanel in its CENTER
and a “reset” button in its SOUTH.

e The JPanel has a horizontal box b, which contains
two vertical Boxes.

e Each vertical Box contains two instances of class Square.

e Click a Square that has no pink circle, and a pink circle is drawn.
Click a square that has a pink circle, and the pink circle disappears.
Click the rest button and all pink circles disappear.

e This GUI has to listen to: O OO demo
(1) a click on Button reset
(2) a click on a Square (a Box)

These are different kinds of
events, and they need
different listener methods

/** Instance: JPanel of size (WIDTH, HEIGHT). —
Green or red: */
public class Square extends JPanel {
public static final int HEIGHT= 70;
public static final int WIDTH= 70;
private int x, y; // Panel is at (X, y)
private boolean hasDisk= false;
/** Const: square at (X, y). Red/green? Parity of x+y. */
public Square(int x, int y) { Class
this.x= x; this.y=y; Square
setPreferredSize(new Dimension(WIDTH, HEIGHT));
h
/** Complement the "has pink disk" property */
public void complementDisk() {
hasDisk= ! hasDisk;
repaint(); // Ask the system to repaint the square
h

continued on later

14

Class Graphics

An object of abstract class Graphics has methods to draw on a
component (e.g. on a JPanel, or canvas).

Major methods:
drawString(“abc”, 20, 30); drawLine(x1, yl1, x2, y2);
drawRect(x, y, width, height); fillRect(x, y, width, height);

drawOval(x, y, width, height); fillOval(x, y, width, height);
setColor(Color.red); getColor()

getFont() setFont(Font 1);
More methods

You won’t create an object of Graphics; you will be
given one to use when you want to paint a component

Graphics is in package java.awt
15

continuation of class Square

/* paint this square using g. System calls
paint whenever square has to be redrawn.*/
public void paint(Graphics g) {
if ((x+y)%2 == 0) g.setColor(Color.green);
else g.setColor(Color.red);

g fillRect(0, 0, WIDTH-1, HEIGHT-1);

if (hasDisk) {
g.setColor(Color.pink);
g.fillOval(7,7, WIDTH-14, HEIGHT-14);

¥

g.setColor(Color.black);
g.drawRect(0, 0, WIDTH-1 HEIGHT-1);

g.drawString("("+x+", "+y+")", 10, S+HEIGHT/2);

¥
¥

Class
Square

/** Remove pink disk
(if present) */
public void clearDisk() {
hasDisk= false;
// Ask system to
// repaint square
repaint();

¥

D demo

Listen to mouse event
(click, press, release, enter, leave on a component)

public interface MouseListener { In package java.awt.event
void mouseClicked(MouseEvent ¢);
void mouseEntered(MouseEvent ¢);
void mouseExited(MouseEvent ¢);
void mousePressed(MouseEvent ¢);
void mouseReleased(MouseEvent ¢);

Having write all of these in a class that implements
MouseListener, even though you don’t want to use all
of them, can be a pain. So, a class is provided that
implements them 1n a painless.

Listen to mouse event
(click, press, release, enter, leave on a component)

In package java.swing.event MouseEvents

public class MouselnputAdaptor

implements MouseListener, MouselnputListener {
public void mouseClicked(MouseEvent €) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent ¢) {}
public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent ¢) {}
. others ...

So, just write a subclass of MouselnputAdaptor and
] override only the methods appropriate for the application

18

Javax.swing.event.MouselnputAdapter

al

implements MouseListener

MIA

mouseClicked()
mouseEntered()
mouseExited()
mousePressed()
mouseReleased()

MouseEvents

mouseClicked() {

MouseListener
a2
JFrame
MouseDemo?2
me|al| b00|...| bOI]...

MouseDemo?2() { ...
b00.addMouseListener(me);

}.

19

import javax.swing.*; A class that listens to a
import javax.swing.event.*; mouseclick in a Square
import java.awt.”*;

import java.awt.event.*; e B LB

blue: placing

/** Contains a method that responds to a

mouse click in a Square */

public class MouseEvents This class has several methods
extends MouselnputAdapter { (that do nothing) to process
// Complement "has pink disk" property mouse events:
public void mouseClicked(MouseEvent €) { mouse click
Object ob= e.getSource(); mouse press
if (ob instanceof Square) { mouse release
((Square)ob).complementDisk(); IO LS SOOIt
1 mouse leaves component
mouse dragged beginning in
\ ; component

Our class overrides only the method that processes mouse clicks
20

public class MD2 extends JFrame jb.addActionListener(this);
implements ActionListener { b00.addMouseListener(me);

Box b= new Box(...X AXIS); b01.addMouseListener(me);

Box leftC= new Box(...Y_AXIS); ~Dl0.addMouscListener(me);
Square b00, b01= new squares; bl1.addMouseListener(me);

Box riteC= new Box(..Y AXIS); j

Square b10, b01= new squares; public void actionPerformed (
JButton jb= new JButton("reset"); ActionEvent e) {
MouseEvents me= call clearDisk() for
new MouseEvents(); b00, b01, bl0, b1l
/** Constructor: ... */ h

public MouseDemo2() {
super(“MouseDemo2”);
place components in JFrame; blue: placing
pack, make unresizeable, visible;

red: listening

MouseDemo?2
21

Listening to the keyboard

import java.awt.*; import java.awt.event.*; import javax.swing.*;

public class AllCaps extends KeyAdapter { red: listening
JFrame capsFrame= new JFrame(); \ lue: placin
JLabel capsLabel= new JLabel();) g
public AlICaps() { |. Extend this class.

capsLabel.setHorizontal Alignment(SwingConstants. CENTER);
capsLabel.setText(":)");

capsFrame.setSize(200,200); 3.Add this instance as a
Container c= capsFrame.getContentPane(); key listener for the frame
c.add(capsLabel); 2. Override this method.
capsFrame.addKeyListener(this); It is called when a key
}capsFrame.show(); —stroke is detected.

L=

public void keyPressed (KeyEvent e) {
char typedChar= e.getKeyChar();
capsLabel.setText(("" + typedChar + "").toUpperCase());

¥
¥

22

public class BDemo3 extends JFrame implements ActionListener {
private JButton wButt, eButt ...;

public ButtonDemo3() {
Add buttons to JFrame, ---
wButt.addActionListener(this);

Have a different
listener for each

eButt.addActionListener(new BeListener(),, IS
J
public void actionPerformed(ActionEvent e) {
boolean b= eButt.isEnabled();
eButt.setEnabled(!b); wButt.setEnabled(b); }
b Doesn’t work!
A listener for eastButt Can’t
class BeListener implements ActionListener { reference
public void actionPerformed(ActionEvent e) { eButt. wButt

boolean b= eButt.isEnabled();

eButt.setEnabled(!b); wButt.setEnabled(b);
1 ButtonDemo3

public class BDemo3 extends JFrame implements ActionListener {
private JButton wButt, eButt ...;

public ButtonDemo3() {
Add buttons to JFrame, ---
wButt.addActionListener(this);

Have a different
listener for each

eButt.addActionListener(new BeListener() button
}
public void actionPerformed(ActionEvent e) {
boolean b= eButt.isEnabled();
eButt.setEnabled(!b); wButt.setEnabled(b); }
Make

class BeListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
boolean b= eButt.isEnabled();
eButt.setEnabled(!b); wButt.setEnabled(b);

Bel istener an
inner class

)
1 ButtonDemo3

¥

24

public class BDemo3 extends JFrame implements ActionListener {

Why can’t we just put method actionPerformed

as an argument to addActionListener? .
Basic Java does not

public ButtonDemo3() { allow functions as

Add buttons to JFrame, ---
’ areuments. Need an
wButt.addActionListener(this); S

eButt.addActionListener(new BeListener()); object the.‘t contains
} the function

public void actionPerformed(ActionEvent €) { Basic Java does
boolean b= eButt.isEnabled();

have “anonymous
eButt.setEnabled(!b); wButt.setEnabled(b); }

classes”

class BeListener implements ActionListener {
public void actionP.erformed(ActionEvent e) { syntactic sugar for
boolean b= eButt.isEnabled();

functions as
eButt.setEnabled(!b); wButt.setEnabled(b); Y
" arguments

ButtonDemo3

Java 8 does have

25

Since Java 8: Have a function as

argument We don’t expect you to

master this. It’s here only to
public class BDemo4 extends JFrame | give you an idea of what is

private Jbutton eButt; possible, what you might see

public ButtonDemo4() { in a Java program.

Add component to JFrame ---

eButt.addActionListener(e —> { boolean b= eButt.isEnabled();
eButt.setEnabled(!b);

1);

}
It’s syntactic sugar. | class Behi xdnListener {
Compiler will public voi ' d(ActionEvent e) {
translate it into a boolean b= '

class that contains eButt.setEnab
the function before j
compiling j ButtonDemo4

26

ANONYMOUS CLASS
You will see anonymous classes in AS and other GUI programs
Use sparingly, and only when the anonymous class
has 1 or 2 methods in it,

because the syntax is ugly, complex, hard to understand.

The last two slides of this ppt show you how to eliminate
BeListener by introducing an anonymous class.

You do not have to master this material

27

Have a class for which only one object is created?

Use an anonymous class.

Use sparingly, and only when the anonymous class has 1 or 2 methods
in 1it, because the syntax is ugly, complex, hard to understand.

public class BDemo3 extends JFrame implements ActionListener {
private JButton wButt, eButt .. .;

public ButtonDemo3() { ...
eButt.addActionListener(new BeListener());

¥

public void actionPerformed(ActionEvente) { ... }

private class BeListener implements ActionListener {
public void actionPerformed(ActionEvent) { body }

¥

1 object of BeListener created. Ripe for making anonymous

¥

28

Making class anonymous will replace new BeListener()

Expression that creates object of BeListener

eButt.addActionListener(new BeListener ());

implements ActiyZListener

private class BeListe
{ declarations in efass }

2. Wse name of interface that

/ BeListener implements

1. Write new

3. Write ney ActionListener () constructor call
4. Writg ngw ActionListener () 4. Put 1n class body
{ declarations in class }

5. Replace new BelListener() by new-expression

29

ANONYMOUS CLASS IN AS.
PaintGUI. setUpMenuBar, fixing item “New”

Fix it so that
Save new JMenultem colntrol-llj
IMenuItem.newItems=.new.JIMenuItem("New"); el tik
newItem.setMnemonic(KeyEvent. VK_N); menu item

newltem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent. VK_N,

ActionEvent.CTRL_MASK));
newltem.addActionListener(new ActionListener() {

public-void- actionPerformed(ActionEvent.e) {
newAction(e);

YT new ActionListener() { ... } declares an anonymous
class and creates an object of it. The class implements
ActionListener. Purpose: call newAction(e) when

actionPerformed 1s called
30

s

Using an AS function (only in Java 8!.
PaintGUI. setUpMenuBar, fixing item “New”

Fix it so that

Save new JMenultem control-N

IMenuItem.newItem=.new-JMenultem("New"); selects. this
newItem.setMnemonic(KeyEvent. VK_N); ATETIN LS
newItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent. VK_N,

ActionEvent. CTRL_MASK));
newltem.addActionlListener(e.->. { newAction(e); });

argument ¢ -> { newAction(e);}
of addActionListener is a function that, when called, calls
newAction(e).

31

ANONYMOUS CLASS VERSUS FUNCTION CALL
PaintGUI. setUpMenuBar, fixing item “New”

The Java 8 compiler will change this:
newltem.addActionListener(e -> { newAction(e); });
back into this:

newltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
newAction(e);

}
b;

and actually change that back into an inner class

32

