
TREES
Lecture 12
CS2110 – Fall 2017

Important Announcements

¨ A4 is out now and due two weeks from today. Have
fun, and start early!

2

3

A picture of a singly linked list:

2 1 1 0

Node object
pointer

int value

Today: trees!
0

4 1 1 0

2

1

1

Tree Overview
4

Tree: data structure with
nodes, similar to linked list

¤ Each node may have zero
or more successors (children)

¤ Each node has exactly one
predecessor (parent) except
the root, which has none

¤ All nodes are reachable
from root

5

4

7 8 9

2

A tree Not a tree

5

4

7 8

Also not a tree

5

6

8
List-like tree

5

4

7 8 9

2

Binary Trees
5

A binary tree is a particularly
important kind of tree where
every node as at most two
children.

In a binary tree, the two
children are called the left
and right children.

5

4

7 8 9

2

Not a binary tree
(a general tree)

5

4

7 8

2

Binary tree

Binary trees were in A1!

You have seen a binary tree in A1.

A PhD object has one or two advisors. (Confusingly, my
advisors are my “children.”)

6

Adrian Sampson

Luis Ceze Dan Grossman

Josep Torellas Greg Morrisett

Tree Terminology
7

M

G W

PJD

NHB S

the root of the tree
(no parents)

the leaves of the tree
(no children)

left child of M right child of M

Tree Terminology
8

M

G W

PJD

NHB S

ancestors of B

descendants of W

Tree Terminology
9

M

G W

PJD

NHB S

left subtree of M

Tree Terminology
10

M

G W

PJD

NHB S

A node’s depth is the length of the path to the root.
A tree’s (or subtree’s) height is he length of the longest path from
the root to a leaf.

Depth 1, height 2.

Depth 3, height 0.

Tree Terminology
11

G W

PJD

NHB S

Multiple trees: a forest.

Class for general tree nodes

12

class GTreeNode<T> {
private T value;
private List<GTreeNode<T>> children;
//appropriate constructors, getters,
//setters, etc.

}

5

4

7 8 9

2

7 8 3 1

General
tree

Parent contains a list of
its children

Class for general tree nodes

13

class GTreeNode<T> {
private T value;
private List<GTreeNode<T>> children;
//appropriate constructors, getters,
//setters, etc.

}

5

4

7 8 9

2

7 8 3 1

General
tree

Java.util.List is an interface!
It defines the methods that all
implementation must implement.
Whoever writes this class gets to
decide what implementation to use —
ArrayList? LinkedList? Etc.?

Class for binary tree node
14

class TreeNode<T> {
private T value;
private TreeNode<T> left, right;

/** Constructor: one-node tree with datum x */
public TreeNode (T d) { datum= d; left= null; right= null;}

/** Constr: Tree with root value x, left tree l, right tree r */
public TreeNode (T d, TreeNode<T> l, TreeNode<T> r) {

datum= d; left= l; right= r;
}

}

Either might be null if
the subtree is empty.

more methods: getValue, setValue,
getLeft, setLeft, etc.

Binary versus general tree

In a binary tree, each node has up to two pointers: to the left
subtree and to the right subtree:

¤ One or both could be null, meaning the subtree is empty
(remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes
(and they need not be ordered)

¤ Very useful in some situations ...
¤ ... one of which may be in an assignment!

15

An Application: Syntax Trees
16

(1 + (9 – 2)) * 7

*

7+

–1

9 2

A Java expression as a string.

An expression as a tree.

“parsing”

Applications of Tree: Syntax Trees
17

¨ Most languages (natural and computer) have a
recursive, hierarchical structure

¨ This structure is implicit in ordinary textual
representation

¨ Recursive structure can be made explicit by
representing sentences in the language as trees:
Abstract Syntax Trees (ASTs)

¨ ASTs are easier to optimize, generate code from, etc.
than textual representation

¨ A parser converts textual representations to AST

18

In textual representation:
Parentheses show
hierarchical structure

In tree representation:
Hierarchy is explicit in
the structure of the tree

We’ll talk more about
expressions and trees in
next lecture

-34 -34

- (2 + 3)

+

2 3

((2+3) + (5+7))

+

2 3 5 7

+

+

Text Tree Representation

-

Applications of Tree: Syntax Trees

A Tree is a Recursive Thing
19

A binary tree is either null or an object consisting of a value,
a left binary tree, and a right binary tree.

Looking at trees recursively

20

9

8 3

Binary tree

5 7

2

0

Left subtree,
which is a binary tree too

Right subtree
(also a binary tree)

Looking at trees recursively

a binary tree

Looking at trees recursively

value

left
subtree

right
subtree

Looking at trees recursively

value

A Recipe for Recursive Functions
24

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

Recursive Functions on Binary Trees
25

Base case:
empty tree (null)
or, possibly, a leaf

Recursive case:
Call the function on each subtree.
Use the recursive result to build a solution for the full input.

Searching in a Binary Tree
26

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {

if (t == null) return false;
if (x.equals(t.datum)) return true;
return treeSearch(x, t.left) || treeSearch(x, t.right);

}

9

8 3 5 7

2

0

� Analog of linear search in lists:
given tree and an object, find out if
object is stored in tree

� Easy to write recursively, harder to
write iteratively

Searching in a Binary Tree
27

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {

if (t == null) return false;
if (x.equals(t.datum)) return true;
return treeSearch(x, t.left) || treeSearch(x, t.right);

}

9

8 3 5 7

2

0

VERY IMPORTANT!
We sometimes talk of t as the root of
the tree.
But we also use t to denote the
whole tree.

Some useful methods – what do they do?
28

/** Method A ??? */
public static boolean A(Node n) {

return n != null && n.left == null && n.right == null;
}
/** Method B ??? */
public static int B(Node n) {

if (n== null) return -1;
return 1 + Math.max(B(n.left), B(n.right));

}
/** Method C ??? */
public static int C(Node n) {

if (n== null) return 0;
return 1 + C(n.left) + C(n.right);

}

Some useful methods
29

/** Return true iff node n is a leaf */
public static boolean isLeaf(Node n) {

return n != null && n.left == null && n.right == null;
}
/** Return height of node n (postorder traversal) */
public static int height(Node n) {

if (n== null) return -1; //empty tree
return 1 + Math.max(height(n.left), height(n.right));

}
/** Return number of nodes in n (preorder traversal) */
public static int numNodes(Node n) {

if (n== null) return 0;
return 1 + numNodes(n.left) + numNodes(n.right);

}

> 5< 5

Binary Search Tree (BST)
30

A binary search tree is a binary tree that is ordered and
has no duplicate values. In other words, for every node:
- All nodes in the left subtree have values that are less

than the value in that node, and
- All values in the right subtree are greater.

2

0 3 7 9

5

8

A BST is the key to making search way faster.

Binary Search Tree (BST)
31

2

0 3 7 9

5

8

boolean searchBST(n, v):
if n==null, return false
if n.v == v, return true
if v < n.v
return searchBST(n.left, v)

else
return searchBST(n.right, v)

boolean searchBT(n, v):
if n==null, return false
if n.v == v, return true
return searchBST(n.left, v)

|| searchBST(n.right, v)

Compare binary tree to binary search tree:

2 recursive calls 1 recursive call

Building a BST
32

¨ To insert a new item:
¤ Pretend to look for the item
¤ Put the new node in the place where you fall off the tree

Building a BST
33

january

Building a BST
34

january

Building a BST
35

january february

Building a BST
36

january

february

Building a BST
37

january

february

Building a BST
38

january

february

march

Building a BST
39

january

february march

Building a BST
40

january

february march

april

Building a BST
41

january

february marchapril

Building a BST
42

january

february march

april

Building a BST
43

january

february march

april

Building a BST
44

january

february march

april mayjune

julyaugust september

october

november

december

Inserting in Alphabetical Order
45

april

Inserting in Alphabetical Order
46

april

Inserting in Alphabetical Order
47

april august

Inserting in Alphabetical Order
48

april

august

Inserting in Alphabetical Order
49

april

august

december

Inserting in Alphabetical Order
50

april

august

december

february

january

Insertion Order Matters

¨ A balanced binary tree is one where the two
subtrees of any node are about the same size.

¨ Searching a binary search tree takes O(h) time,
where h is the height of the tree.

¨ In a balanced binary search tree, this is O(log n).
¨ But if you insert data in sorted order, the tree

becomes imbalanced, so searching is O(n).

51

Printing contents of BST
52

Because of ordering
rules for a BST, it’s easy
to print the items in
alphabetical order

¤Recursively print
left subtree

¤Print the node
¤Recursively print

right subtree

/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {

if (t== null) return;
print(t.left);
System.out.print(t.value);
print(t.right);

}

Tree traversals

“Walking” over the whole tree
is a tree traversal

¤ Done often enough that
there are standard names

Previous example:
in-order traversal

nProcess left subtree
nProcess root
nProcess right subtree

Note: Can do other processing
besides printing

Other standard kinds of
traversals
§preorder traversal

wProcess root
wProcess left subtree
wProcess right subtree

§postorder traversal
wProcess left subtree
wProcess right subtree
wProcess root

§level-order traversal
wNot recursive: uses a queue

(we’ll cover this later)

53

Useful facts about binary trees
54

Max # of nodes at depth d: 2d

If height of tree is h
¤min # of nodes: h + 1
¤max #of nodes in tree:
¤20 + … + 2h = 2h+1 – 1

Complete binary tree
¤All levels of tree down to

a certain depth are
completely filled

5

4

7 8

2

0 4

depth
0

1

2

5

2

4
Height 2,
minimum number of nodes

Height 2,
maximum number of nodes

Things to think about
55

What if we want to delete
data from a BST?

A BST works great as long as
it’s balanced.
There are kinds of trees that
can automatically keep
themselves balanced as you
insert things!

jan

feb mar

apr mayjun

jul

Tree Summary
56

¨ A tree is a recursive data structure
¤ Each node has 0 or more successors (children)
¤ Each node except the root has exactly one predecessor (parent)
¤ All node are reachable from the root
¤ A node with no children (or empty children) is called a leaf

¨ Special case: binary tree
¤ Binary tree nodes have a left and a right child
¤ Either or both children can be empty (null)

¨ Trees are useful in many situations, including exposing the
recursive structure of natural language and computer
programs

