"Organizing 1s what you do before you do something,
so that when you do it, it 1s not all mixed up."
~A. A. Milne

SORTING

Lecture 11
CS2110 — Fall 2017




Announcements

IS a program with a “teach anything,

SPLASH! learn anything” philosophy. You will

~t Cornell be able to provide high schoolers
with instruction in the topic of your

choice.
This semester’s event is on Saturday, November 4
Apply to be a teacher!

If you are interested, please email us at:
splashcornell@gmail.com.

\(©



Announcements




Prelim 1

It's on Thursday Evening (9/28)

Two Sessions:

5:30-7:00PM: A..Lid
/:30-9:00PM: Lie..Z

Three Rooms:

We will email you Thursday morning with your room

Bring your Cornell ID!lI



A3

e

120

100

80
60
40
2
I .. =

1M 12 13 14 15 16 17 18 19 20 21

o

(@]



A3 Comments

toString

concept intitive assignments e different ked reat
Sp ent consta Ilt g hald instructions DLL Lomupts worke Way g especially

bl
easier pretty though US€ found gmd cl§s§es fee] eaming

little previous clear lSO SUTe  actual
h el muc llj;lielueme ll ke Pretty Str alghtforwa 1 CaS eS

O ( 3 0t everything
statements “’d‘“

learn..

ripffétH‘w ds h“l tul think

]USt lmplemen’( l lmtroduulon hfk important

leIl(.thll felt
thinking

lecture gener: 11

class

understanding €4Sy
Y leiitned Interesting

at\tll:[il (l){?: enJO ed laé)lle}ngshal engllglg e oo prepend
always seemed etter data d ff l alt times
tlm 1 1IHcult v testing

= dou bly fun Structure et

o definitely know

ractlce nodes
wrltmg 1ke simple P
1stmethod uS%fn‘a& workliked ™ code | " conuing made

structures ® making Overall



A3 Comments

/* Mini lecture on linked lists would have been very helpful. I still do not
* know when we covered this topic in class. It was initially difficult to

* understand what we were meant to do without having learned the topic
* in depth before */

/* Maybe the assignment guide could explain a bit more about how to

* thoroughly test the methods though. Testing is still a bit difficult and I

* wish we had an assignment which covered that more. The instructions
* could have been more specific about what is expected from the test

* cases though. */

/* It also showed me how important it is to test after writing a method. I
* had messed up on one of the earlier methods and if I had waited to test
* I would have had a lot of trouble figuring out what went wrong. This

* assignment showed me how vital it is to test not at the end but

* incrementally. I feel more careful, efficient, and organized. */



Why Sorting?

Sorting is useful
Database indexing
Operations research

Compression

There are lots of ways to sort
There isn't one right answer

You need to be able to figure out the options and
decide which one is right for your application.

Today, we'll learn about several different algorithms
(and how to derive them)



Some Sorting Algorithms

I =
1 Insertion sort
11 Selection sort

1 Merge sort

1 Quick sort



InsertionSort

0 b.length 0 b.length
pre:b ? post: b sorted

0 1 b.length A loop that processes
inv: b | gorted 9 elements of an array

1n 1ncreasing order

or:  b[0..i-1] is sorted has this invariant




Each iteration, i= i+l1l; How to keep inv true?

0 1 b.length
inv: b sorted ?

0 1 b.length
€g9. b|2 555 7|3 ?

0 1 b.length
b2 3555 7 ?




What to do in each iteration?

0 1 b.length
inv: b sorted ?
0 1 b.length
€g. b|2 555 7|3 ?
1255537 9 Push b[i] to its
Loop d ¥
body | [2 553 57 9 sorted position
(inv true — in b[0..1], then
before 2535 5|7 7 Increase 1
and after) ] 2355 5|7 9

This will take time proportional to the number of swaps needed
b|23 555 7| ? |




Insertion Sort

/I 'sort b[], an array of int Note English statement
// inv: b[0..i-1] is sorted in body.
for (int i= 0; i < b.length; i=i+1) { Abstraction. Says what
// Push b[1] down to its sorted to do, not how.

// position 1n b[0..1]
This 1s the best way to
\ present 1t. We expect
Present algorithm like this you to present it this
way when asked.
Later, can show how to
J implement that with an

inner loop



Insertion Sort

// sort b[], an array of int invariant P: b[0..1] 1s sorted
// inv: b[0..1-1] 1s sorted except that b[k] may be <b[k-1]
for (int i= 0; i < b.length; i= i+1) { k 1
// Pus.h.b[i]. down Fo its sorted " 535 5 1|7 9
// position in b[0..1]
example
int k= 1; start?
while (k>0 && b[k] <b[k-1]) { '
Swap b[k] and b[k-1] stop?
\ k=k-1; progress?
maintain

h invariant?




Insertion Sort

// sort b[], an array of int
// inv: b[0..1-1] 1s sorted
for (int i= 0; i < b.length; i=i+1) { Let n = b.length

Push b[1] down to its sorted position
in b[0..1]

e Worst-case: O(n?)
(reverse-sorted input)

b

* Best-case: O(n)

Pushing b[1] down can take 1 swaps. |
(sorted input)

Worst case takes
1 +2 +3 + ...nl1 = (n-1)*n/2  *Expected case: O(n?)

Swaps.



Performance
Sl e

Insertion Sort 0(n) to 0(n?) 0(1)
Selection Sort 0(n?) 0(1) No
Merge Sort

Quick Sort



SelectionSort

0 b.length 0 b.length
pre: b ? post: b | sorted

0 i b.length
inv: b | sorted, <=b[i..] | >=b[0..i-1] Additional term

1n 1nvariant

Keep invariant true while making progress?
0 1 b.length

eg:b|123456|99978609

Increasing 1 by 1 keeps inv true only 1f b[1] 1s min of b[1..]



SelectionSort

//sort b[], an array of int Another common way for

// inv: b[0..i-1] sorted AND people to sort cards

// b[0..1-1] <= bli1..]

for (int 1= 0; 1 < b.length; 1= 1+1) {
int m= index of minimum of b[1..];
Swap b[i1] and b[m];

Runtime
with n = b.length

= \Worst-case O(n?)
= Best-case O(n?)
» Expected-case O(n?)

0 1 length
b | sorted, smaller values larger values

S

Each iteration, swap min value of this section into b[i]

;




Performance
e e

Insertion Sort 0(n) to 0(n?) 0(1)
Selection Sort 0(n?) 0(1) No
Merge Sort

Quick Sort



Merge two adjacent sorted segments

/* Sort b[h. k]. Precondition: b[h..t] and b[t+]1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {

sorted sorted

b[3[ala [7[7 [7]8]8]9 merged, sorted




Merge two adjacent sorted segments

/* Sort b[h. k]. Precondition: b[h..t] and b[t+]1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {

Copy b[h..t] into a new array c;

Merge ¢ and b[t+1..k] into b[h..k];

h t k

h t Kk
8

sorted sorted

b[3[ala [7[7 [7]8]8]9 merged, sorted




Merge two adjacent sorted segments

// Merge sorted ¢ and b[t+1..k] into b

0

t-h

pre: ¢

X

post: b

h

b

h t

h..K]

?

k

x and y, sorted

X, y are sorted

Invariant:

h

0

i

head of x

tail of x

u

\% k

c.length

A

tail of y

head of x and head of y, sorted



Merge

int1=0;
int u = h;
int v=t+1;
while( 1 < t-h){
1f(v <k && b[v] <cJi]) {
b[u] =b[v];
ut++; v,
telse {
b[u] = c[i];
ut+; 1++;

0 t-h h t k
pre: ¢| sorted ? | sorted
h k
post: b| sorted
nv: () 1 c.length
C| sorted sorted
h u \' k
b| sorted ? sorted




Mergesort

/** Sort b[h..k] */

public static void mergesort(int[] b, int h, int k]) {

if (size b[h..k] < 2)
refurn;

int t= (h+k)/2;

mergesort(b, h, t);

mergesort(b, t+1, k);

merge(b, h, t, k);

sorted

sorted

h

merged, sorted




Performance
e

Insertion Sort 0(n) to 0(n?) 0(1)
Selection Sort 0(n?) 0(1) No
Merge Sort n log(n) 0o(n) Yes

Quick Sort



QuickSort

Quicksort developed by Sir Tony Hoare (he was
knighted by the Queen of England for his
contributions to education and CS).

83 years old.

Developed Quicksort in 1958. But he could not
explain it to his colleague, so he gave up on it.

Later, he saw a draft of the new language Algol 58 (which became
Algol 60). It had recursive procedures. First time in a procedural
programming language. “Ah!,” he said. “I know how to write it
better now.” 15 minutes later, his colleague also understood it.



Partition algorithm of quicksort

pre:

h h+l

X

x 1s called
the pivot

Swap array values around until b[h..k] looks like this:

post:

h

]

k

<=X

X

>= X




20| 31| 24119145 |56 {4 [20] 5 | 72|14 |99

pivot partition
)
191 4 | 5 (14| 20| 3124|4556 20 72 99
Not yet Not yet
sorted sorted
these can be these can be
in any order in any order The 20 could

be 1n the other
partition



Partition algorithm

h h+l k
pre: b|x ?
h ) k
pOSt: b <=X X >=X . .
invariant
| . . needs at
Combine pre and post to get an invariant least 4
- ; . K sections

bl <=x x| ? >=X




Partition algorithm

h j {

<=X x| ?

>= X

7= h; t=Kk;
while (j <t) {
if (b[j+1] <=Db[j]) {

Swap b[j+1] and b[j]; j=7+1;

} else {

Swap b[j+1] and b[t]; t=t-1;

j
j

Takes linear time: O(k+1-h)

Initially, with j =h
and t =k, this
diagram looks like
the start diagram

Terminate when j =t,
so the “?”” segment 1s
empty, so diagram
looks like result
diagram



QuickSort procedure

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
if (b[h..k] has <2 elements) return; Base case
int j= partition(b, h, k);
// We know b[h..]—1] <=b[j] <=b[j+1..k]
// Sort b[h..j-1] and b[j+1..k]  Function does the

.. partition algorithm and
828;’ Jh;{ lk))’ returns position j of pivot
h
h ] k

<=X X >=X




Worst case quicksort: pivot always smallest value

J n
x0 >= x() partioning at depth 0
J
x0| x1 >=x1 partioning at depth 1
]
0! x1| x2 >=x? partioning at depth 2
Depth of
/** Sort b[h..k]. */ recursion: O(n)
public static void QS(int[] b, int h, int k) {
if (b[h..k] has <2 elements) return,; Processing at
int j= partition(b, h, k); depth 1: O(n-1)
O(n*n)




Best case quicksort: pivot always middle value

0 ] n
<= x0 XO‘ ~— x0) depth 0. 1 segment of
size ~n to partition.
<=x1 |x1| >=x1[x0| <=x2 |x2 [>=x2 Depth 2. 2 segments of

size ~n/2 to partition.

Depth 3. 4 segments of
size ~n/4 to partition.

Max depth: O(log n). Time to partition on each level: O(n)
Total time: O(n log n).

Average time for Quicksort: n log n. Difficult calculation



QuickSort complexity to sort array of length n

Time complexity
Worst-case: O(n*n)
/** Sort b[h. k]. */ Average-case: O(n log n)
public static void QS(int[] b, int h, int k) {
if (b[h..k] has <2 elements) return,;
int j= partition(b, h, k);
// We know b[h..j—1] <=b[j] <= b[j+1..k]
// Sort b[h..J-1] and b[j+1..k] Worst-case space: ?
QS(b, h, j-1); What’s depth of recursion?

Q5(b, j+1, k), Worst-case space: O(n)!
h --depth of recursion can be n
Can rewrite 1t to have space O(log n)
Show this at end of lecture if we have time



QuickSort wversus MergeSort

/** Sort b[h..k] */ /** Sort b[h..k] */
public static void QS public static void MS
(int[] b, int h, int k) { (int[] b, int h, int k) {

if (k—h <1) return; if (k —h <1) return;
int j= partition(b, h, k); MS(b, h, (h+k)/2);
QS(b, h, j-1); MS(b, (h+k)/2 + 1, k);
QS(b, j+1, k); merge(b, h, (h+k)/2, k);

h h

One processes the array then recurses.
One recurses then processes the array.




Partition. Key issue. How to choose pivot

h h k
pre: blx ? Choosing pivot
Ideal pivot: the median,
h J k since 1t splits array in half
post: p| <=x x| >=x But computing is O(n), quite
complicated

Popular heuristics: Use

¢ first array value (not so good)

¢ middle array value (not so good)

¢ Choose a random element (not so good)

* median of first, middle, last, values (often used)!



Performance
L e

Insertion Sort 0(n) to 0(n?) 0(1)
Selection Sort 0(n?) 0(1) No
Merge Sort n log(n) 0o(n) Yes

Quick Sort nlog(n) to 0(n?) 0(log(n)) No



Sorting in Java

Java.util.Arrays has a method Sort()
implemented as a collection of overloaded methods

for primitives, Sort is implemented with a version of
quicksort

for Objects that implement Comparable, Sort is
implemented with mergesort

Tradeoff between speed/space and
stability /performance guarantees



Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively. We may show you this later. Not today!



QuickSort with logarithmic space

| 40|
/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
int h1=h; int kl1=k;
// mvariant b[h..k] 1s sorted 1f b[h1..k1] 1s sorted
while (b[h1..k1] has more than 1 element) {
Reduce the size of b[hl..k1], keeping inv true



QuickSort with logarithmic space

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
int h1=h; int k1= k;
// invariant b[h..k] 1s sorted 1f b[h1..k1] 1s sorted
while (b[h1..k1] has more than 1 element) {
int j= partition(b, hl, k1);
// b[hl..j-1] <=Db[j] <=b[j+1..kl1]
if (b[h1..3-1] smaller than b[j+1..k1])
{ QS(b, h, j-1); hl= j+1;}
else
{QS(b, j*1, kl); k1= j-1; }

Only the smaller
segment 1s sorted
recursively. If b[hl..k1]
has size n, the smaller
segment has size <n/2.
Therefore, depth of
recursion 1s at most log n



