
ASYMPTOTIC COMPLEXITY
Lecture 10

CS2110 – Fall 2017

“Progress is made by lazy men looking for easier ways to
 do things.”

 - Robert Heinlein

Announcements

0

10

20

30

40

50

60

70

80

90

<1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A2

2

•  A3 due Friday
•  Prelim next Thursday

•  Prelim conflicts: fill out CMS by Friday
•  Review section on Sunday

What Makes a Good Algorithm?
3

Suppose you have two possible algorithms that do the
same thing; which is better?

What do we mean by better?
¤  Faster?
¤  Less space?
¤  Easier to code?
¤  Easier to maintain?
¤  Required for homework?

FIRST, Aim for simplicity,
ease of understanding,
correctness.

SECOND, Worry about
efficiency only when it is
needed.

How do we measure speed of an algorithm?

Basic Step: one “constant time” operation
4

Basic step:
¤  Input/output of a number
¤  Access value of primitive-type variable, array element, or

object field
¤  assign to variable, array element, or object field
¤  do one arithmetic or logical operation
¤  method call (not counting arg evaluation and execution of

method body)

Constant time operation: its time doesn’t depend on the size
or length of anything. Always roughly the same. Time is
bounded above by some number

Counting Steps
5

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1){
 sum= sum + k;
}

All basic steps take time 1.
There are n loop iterations.
Therefore, takes time
proportional to n.

Statement: # times done
sum= 0; 1
k= 1; 1
k <= n n+1
k= k+1; n
sum= sum + k; n
Total steps: 3n + 3

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Linear algorithm in n

Statement: # times done
s= ""; 1
k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
6

// Store n copies of ‘c’ in s
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1){
 s= s + 'c';
}

Concatenation is not a basic
step. For each k, catenation
creates and fills k array
elements.

❌

String@00
String b

char[]

char[]@02
char[] 0 ‘d’

String Concatenation
7

s= s + “c”; is NOT constant time.
It takes time proportional to 1 + length of s

 s

1 ‘x’

String@90
String b

char[]

char[]@018
char[] 0 ‘d’

1 ‘x’
2 ‘c’

Statement: # times done
s= ""; 1
k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
8

// Store n copies of ‘c’ in s
s= "";
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1){
 s= s + 'c';
}

Concatenation is not a basic
step. For each k, catenation
creates and fills k array
elements.

Statement: # times # steps
s= ""; 1 1
k= 1; 1 1
k <= n n+1 1
k= k+1; n 1
s= s + 'c'; n k
Total steps: n*(n-1)/2 + 2n + 3

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Quadratic algorithm in n

Linear versus quadractic
9

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1)
 sum= sum + n

// Store n copies of ‘c’ in s
s= “”;
// inv: s contains k-1 copies of ‘c’
for (int k= 1; k <= n; k= k+1)
 s= s + ‘c’;

In comparing the runtimes of these algorithms, the exact number
of basic steps is not important. What’s important is that

One is linear in n—takes time proportional to n
One is quadratic in n—takes time proportional to n2

Linear algorithm Quadratic algorithm

Looking at execution speed
10

size n of the array 0 1 2 3 …

Number of
operations
executed

Constant time

n ops

n + 2 ops

2n + 2 ops
n*n ops

2n+2, n+2, n are all linear in n,
proportional to n

What do we want from a
definition of “runtime complexity”?

11

size n of problem 0 1 2 3 …

Number of
operations
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases
for large n, not small n

2. Distinguish among
important cases, like
•  n*n basic operations
•  n basic operations
•  log n basic operations
•  5 basic operations

3. Don’t distinguish among
trivially different cases.
• 5 or 50 operations
• n, n+2, or 4n operations

"Big O" Notation
12

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

c·g(n)

f(n)

N

Get out far enough
(for n ≥ N)
f(n) is at most c·g(n)

Intuitively, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower

Prove that (n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

Methodology:

Start with f(n) and slowly transform into c · g(n):
¨  Use = and <= and < steps
¨  At appropriate point, can choose N to help calculation
¨  At appropriate point, can choose c to help calculation

13

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

Prove that (n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)
 f(n)
= <definition of f(n)>
 2n2 + n
<= <for n ≥ 1, n ≤ n2>
 2n2 + n2
= <arith>
 3*n2

= <definition of g(n) = n2>
 3*g(n)

14

Choose
N = 1 and c = 3

Transform f(n) into c·g(n):
• Use =, <= , < steps
• Choose N to help calc.
• Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

Prove that 100 n + log n is O(n)

15

 f(n)
= <put in what f(n) is>

 100 n + log n

<= <We know log n ≤ n for n ≥ 1>

 100 n + n

= <arith>
 101 n
= <g(n) = n>
 101 g(n)

Choose
N = 1 and c = 101

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

O(…) Examples
16

Let f(n) = 3n2 + 6n – 7
¤ f(n) is O(n2)
¤ f(n) is O(n3)
¤ f(n) is O(n4)
¤ …

p(n) = 4 n log n + 34 n – 89
¤ p(n) is O(n log n)
¤ p(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
¤ a(n) is O(1)

Only the leading term (the
term that grows most
rapidly) matters

If it’s O(n2), it’s also O(n3)
etc! However, we always
use the smallest one

Do NOT say or write f(n) = O(g(n))

17

f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use = this way.

 We know that n+2 is O(n) and n+3 is O(n). Suppose we use =

 n+2 = O(n)
 n+3 = O(n)
But then, by transitivity of equality, we have n+2 = n+3.
We have proved something that is false. Not good.

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

Problem-size examples
18

¨  Suppose a computer can execute 1000 operations
per second; how large a problem can we solve?

operations 1 second 1 minute 1 hour

n 1000 60,000 3,600,000
n log n 140 4893 200,000

n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2n 9 15 21

Commonly Seen Time Bounds
19

O(1) constant excellent
O(log n) logarithmic excellent

O(n) linear good
O(n log n) n log n pretty good

O(n2) quadratic maybe OK
O(n3) cubic maybe OK
O(2n) exponential too slow

Big O Poll

Consider two different data structures that could store your data: an array or
a doubly-linked list. In both cases, let n be the size of your data structure (i.e.,
the number of elements it is currently storing). What is the running time of each
of the following operations:

•  get(i) using an array

•  get(i) using a DLL

•  insert(v) using an array

•  insert(v) using a DLL

20

a

Java Lists

¨  java.util defines an interface List<E>
¨  implemented by multiple classes:

¤ ArrayList
¤ LinkedList

21

Search for v in b[0..]
22

Methodology:
1.  Define pre and post

conditions.
2.  Draw the invariant as a

combination of pre and
post.

3.  Develop loop using 4
loopy questions.

Practice doing this!

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

 inv: b != v v in here
0 i b.length

Search for v in b[0..]
23

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

Methodology:
1.  Define pre and post

conditions.
2.  Draw the invariant as a

combination of pre and
post.

3.  Develop loop using 4
loopy questions.

Practice doing this!

post: b != v v ?
0 i b.length

pre: b
0 b.length

v in here

The Four Loopy Questions

¨  Does it start right?
Is {Q} init {P} true?

¨  Does it continue right?
Is {P && B} S {P} true?

¨  Does it end right?
Is P && !B => R true?

¨  Will it get to the end?
Does it make progress
toward termination?

24

Search for v in b[0..]
25

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

while () {

}

i= 0;
b[i] != v

i= i+1;

Each iteration takes
constant time.

Worst case: b.length-1
iterations Linear algorithm: O(b.length)

 inv: b != v v in here
0 i b.length

post: b != v v ?
0 i b.length

pre: b
0 b.length

v in here

Search for v in sorted b[0..]
26

// Store in i to truthify b[0..i] <= v < b[i+1..]
// Precondition: b is sorted.

Methodology:
1.  Define pre and post

conditions.
2.  Draw the invariant as a

combination of pre and
post.

3.  Develop loop using 4
loopy questions.

Practice doing this!

post: b <= v > v
0 i b.length

pre: b
0 b.length

sorted

 inv: b <= v > v
0 i k b.length

sorted

Another way to search for v in b[0..]
27

// Store in i to truthify b[0..i] <= v < b[i..]
// Precondition: b is sorted.

while () {

}

i= -1;
k= b.length;

i < k-1
int j= (i+k)/2;
// i < j < k
if (b[j] <= v) i= j;
else k= j;

post: b <= v > v
0 i b.length

pre: b
0 b.length

sorted

 inv: b <= v > v
0 i k b.length

sorted

b <= v > v j = (i+k)/2
0 i j k b.length

Another way to search for v in b[0..]
28

// Store in i to truthify b[0..i] <= v < b[i..]
// Precondition: b is sorted.

while () {

}

i= -1;
k= b.length;

i < k-1
int j= (i+k)/2;
// i < j < k
if (b[j] <= v) i= j;
else k= j;

Each iteration takes constant time.
Worst case: log(b.length)

iterations
Logarithmic: O(log(b.length))

post: b <= v > v
0 i b.length

pre: b
0 b.length

sorted

 inv: b <= v > v
0 i k b.length

sorted

Another way to search for v in b[0..]
29

// Store in i to truthify b[0..i] <= v < b[i+1..]
// Precondition: b is sorted.

while () {

}

i= 0;
k= b.length;

i < k-1

Logarithmic: O(log(b.length))

 inv: b
0 i j k b.length

≥𝑣 <𝑣

post: b
0 i b.length
<𝑣 ≥𝑣

pre: b
0 b.length

?
This algorithm is better than binary
searches that stop when v is found.
1.  Gives good info when v not in b.
2.  Works when b is empty.
3.  Finds last occurrence of v, not

arbitrary one.
4.  Correctness, including making

progress, easily seen using invariant

int j= (i+k)/2;
// i < j < k
if (b[j] <= v) i= j;
else k= j;

Dutch National Flag Algorithm
30

Dutch national flag. Swap b[0..n-1] to put the reds first, then
the whites, then the blues. That is, given precondition Q, swap
values of b[0.n] to truthify postcondition R:

 ?

0 n
Q: b

 reds whites blues

0 n
R: b

Dutch National Flag Algorithm

 reds whites blues ?

0 n
P1: b

 reds whites ? blues

0 n
P2: b

 ?
0 n

Q: b

 reds whites blues
0 n

R: b

Dutch National Flag Algorithm: invariant P1

 reds whites blues ?
0 n

P1: b
h k p

h= 0; k= h; p= k;
while () {

}

p != n
if (b[p] blue)
else if (b[p] white) {

}
else { // b[p] red

}

p= p+1;

swap b[p], b[k];
p= p+1; k= k+1;

swap b[p], b[h];
swap b[p], b[k];
p= p+1; h=h+1; k= k+1;

 ?
0 n

Q: b

 reds whites blues
0 n

R: b

33

Dutch National Flag Algorithm: invariant P2

 reds whites ? blues
0 n

P2: b
h k p

h= 0; k= h; p= n;
while () {

}

k != p

if (b[k] white)
else if (b[k] blue) {

}
else { // b[k] is red

}

k= k+1;

p= p-1;
swap b[k], b[p];

swap b[k], b[h];
h= h+1; k= k+1;

Asymptotically, which algorithm is faster?

Invariant 1 Invariant 2

34

 reds whites blues ?
0 h k p n

h= 0; k= h; p= k;
while () {

}

p != n

if (b[p] blue)
else if (b[p] white) {

}
else { // b[p] red

}

p= p+1;

swap b[p], b[k];
p= p+1; k= k+1;

swap b[p], b[h];
swap b[p], b[k];
p= p+1; h=h+1; k= k+1;

 reds whites ? blues
0 h k p n

h= 0; k= h; p= n;
while () {

}

if (b[k] white)
else if (b[k] blue) {

}
else { // b[k] is red

}

k= k+1;

p= p-1;
swap b[k], b[p];

swap b[k], b[h];
h= h+1; k= k+1;

k != p

Asymptotically, which algorithm is faster?

Invariant 1 Invariant 2

35

 reds whites blues ?
h= 0; k= h; p= k;
while () {

}

p != n

if (b[p] blue)
else if (b[p] white) {

}
else { // b[p] red

}

p= p+1;

swap b[p], b[k];
p= p+1; k= k+1;

swap b[p], b[h];
swap b[p], b[k];
p= p+1; h=h+1; k= k+1;

 reds whites ? blues
h= 0; k= h; p= n;
while () {

}

if (b[k] white)
else if (b[k] blue) {

}
else { // b[k] is red

}

k= k+1;

p= p-1;
swap b[k], b[p];

swap b[k], b[h];
h= h+1; k= k+1;

k != p might use 2 swaps per iteration uses at most 1 swap per iteration

These two algorithms have the same asymptotic running time
(both are O(n))

0 h k p n 0 h k p n

