
RECURSION
 (CONTINUED)

Lecture 9
CS2110 – Fall 2017

Prelim one week from Thursday

1.  Visit Exams page of course website, check what time
your prelim is, complete assignment P1Conflict ONLY
if necessary. So far 54, people completed it!

2.  Review session Sunday 1-3. Kimball B11. Next
week’s recitation will also be a review.

3.  A3 is due 3 days from now, on Friday.

4.  If appropriate, please check the JavaHyperText
before posting a question on the Piazza. You can get
your answer instantaneously rather than have to wait
for a Piazza answer. “default”, “access”, “modifier”,
“private” are well-explained the JavaHyperText .

Why is the product of an empty bag of values 1?
Suppose bag b contains 2, 2, 5 and p is its product: 20.
Suppose we want to add 4 to the bag and keep p the product.
We do:
 insert 4 in the bag;
 p= 4 * p;

Suppose bag b is empty and p is its product: what value?
Suppose we want to add 4 to the bag and keep p the product.
We do the same thing:
 insert 4 in the bag;
 p= 4 * p;

For this to work, the product of the empty bag has to be 1,
since 4 = 1 * 4

// invariant: p = product of c[0..k-1]
 what’s the product when k == 0?

0 is the identity of + because 0 + x = x
1 is the identity of * because 1 * x = x
false is the identity of || because false || b = b
true is the identity of && because true && b = b
1 is the identity of gcd because gcd({1, x}) = x
For any such operator o, that has an identity,
o of the empty bag is the identity of o.
Sum of the empty bag = 0
Product of the empty bag = 1
OR (||) of the empty bag = false.
gcd of the empty bag = 1

 gcd: greatest common divisor of the elements of the bag

Primitive vs Reference (or class) Types
5

Primitive Types:
char
boolean
int
float
double
byte
short
long

Reference Types:
Object
JFrame
String
PHD
int[]
Animal
Animal[]
... (everything else!)

 A variable of the type contains:

A value of that type A pointer to an object of that type

== vs equals
6

Once you understand primitive vs reference types, there are only
two things to know:

 a == b compares a and b’s values
 for a, b of some reference type, use == to determine
 whether a and b point to the same object.

 a.equals(b) compares the two objects using method equals

 The value of a.equals(b) depends on the specification of
 equals in the class!

== vs equals: Reference types
7

For reference types, p1 == p2
determines whether p1 and p2 contain
the same reference (i.e., point to the
same object or are both null).

p1.equals(p2) tells whether the objects
contain the same information (as
defined by whoever implemented
equals).

p1 a0

p2 a0

p3 a1

p4 null

p2 == p1
p3 == p1
p4 == p1

Pt a0 = new Pt(3,4);
Pt a1 = new Pt(3,4);

p2.equals(p1)
p3.equals(p1)
p4.equals(p1)

true
false
false

true
true
NullPointerException!

8

1. Push frame for call onto call stack.

2. Assign arg values to pars.

3. Execute method body.

4. Pop frame from stack and (for a
function) push return value on the stack.

For function call: When control given back
to call, pop return value, use it as the value
of the function call.

public int m(int p) {
 int k= p+1;
 return p;
}

m(5+2)
call stack

p ____

k ____

7

8

Recap: Executing Recursive Methods

Recap: Understanding Recursive Methods
9

1.  Have a precise specification

2.  Check that the method works in the base case(s).

3. Look at the recursive case(s). In your mind, replace each
recursive call by what it does according to the spec and
verify correctness.

4. (No infinite recursion) Make sure that the args of
recursive calls are in some sense smaller than the pars of the
method

Problems with recursive structure
10

Code will be available on the course webpage.

1.  exp - exponentiation, the slow way and the fast way

2.  perms – list all permutations of a string

3.  tile-a-kitchen – place L-shaped tiles on a kitchen floor

4.  drawSierpinski – drawing the Sierpinski Triangle

Computing bn for n >= 0
11

Power computation:
¤  b0 = 1
¤  If n != 0, bn = b * bn-1
¤  If n != 0 and even, bn = (b*b)n/2

Judicious use of the third property gives far better algorithm

Example: 38 = (3*3) * (3*3) * (3*3) * (3*3) = (3*3) 4

Computing bn for n >= 0
12

Power computation:
¤  b0 = 1
¤  If n != 0, bn = b bn-1
¤  If n != 0 and even, bn = (b*b)n/2

/** = b**n. Precondition: n >= 0 */
static int power(double b, int n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(b*b, n/2);
 return b * power(b, n-1);
}

Suppose n = 16
Next recursive call: 8
Next recursive call: 4
Next recursive call: 2
Next recursive call: 1
Then 0

16 = 2**4
Suppose n = 2**k
Will make k + 2 calls

Computing bn for n >= 0
13

/** = b**n. Precondition: n >= 0 */
static int power(double b, int n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(b*b, n/2);
 return b * power(b, n-1);
}

Suppose n = 16
Next recursive call: 8
Next recursive call: 4
Next recursive call: 2
Next recursive call: 1
Then 0

16 = 2**4
Suppose n = 2**k
Will make k + 2 calls

If n = 2**k
k is called the logarithm (to base 2)
of n: k = log n or k = log(n)

Difference between linear and log solutions?
14

/** = b**n. Precondition: n >= 0 */
static int power(double b, int n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(b*b, n/2);
 return b * power(b, n-1);
}

/** = b**n. Precondition: n >= 0 */
static int power(double b, int n) {
 if (n == 0) return 1;
 return b * power(b, n-1);
}

Number of recursive
calls is n

Number of recursive
calls is ~ log n.

To show difference,
we run linear
version with bigger
n until out of stack
space. Then run log
one on that n. See
demo.

Table of log to the base 2

15

k n = 2^k log n (= k)
 0 1 0
 1 2 1
 2 4 2
 3 8 3
 4 16 4
 5 32 5
 6 64 6
 7 128 7
 8 256 8
 9 512 9
10  1024 10
11  2148 11
15 32768 15

Permutations of a String
16

perms(abc): abc, acb, bac, bca, cab, cba

abc acb
bac bca
cab cba

Recursive definition:
 Each possible first letter, followed by all permutations of
 the remaining characters.

Tiling Elaine’s kitchen
17

Kitchen in Gries’s house: 8 x 8. Fridge sits on one of 1x1 squares
His wife, Elaine, wants kitchen tiled with el-shaped tiles –every
square except where the refrigerator sits should be tiled.

8

8 /** tile a 23 by 23 kitchen with 1
 square filled. */
public static void tile(int n)

We abstract away keeping track
of where the filled square is, etc.

Tiling Elaine’s kitchen
18

/** tile a 2n by 2n kitchen with 1
 square filled. */
public static void tile(int n) {

}

We generalize to a 2n by 2n kitchen

Base case?

if (n == 0) return;

Tiling Elaine’s kitchen
19

/** tile a 2n by 2n kitchen with 1
 square filled. */
public static void tile(int n) {

}

n > 0. What can we do to get kitchens of size 2n-1 by 2n-1

if (n == 0) return; 2n

2n

Tiling Elaine’s kitchen
20

/** tile a 2n by 2n kitchen with 1
 square filled. */
public static void tile(int n) {

}

We can tile the upper-right 2n-1 by 2n-1 kitchen recursively.
But we can’t tile the other three because they don’t have a filled
square.
What can we do? Remember, the idea is to tile the kitchen!

if (n == 0) return;

Tiling Elaine’s kitchen
21

/** tile a 2n by 2n kitchen with 1
 square filled. */
public static void tile(int n) {

}

if (n == 0) return;
Place one tile so that each kitchen
has one square filled;

 Tile upper left kitchen recursively;
Tile upper right kitchen recursively;
Tile lower left kitchen recursively;
Tile lower right kitchen recursively;

S triangle of depth 2: 3 S
triangles of depth 1 drawn at
the 3 vertices of the triangle

Sierpinski triangles
22

S triangle of depth 0

S triangle of depth 1: 3 S triangles of
depth 0 drawn at the 3 vertices of the
triangle

S triangle of depth d at
points p1, p2, p3:

3 S triangles of depth d-1
drawn at at p1, p2, p3

Sierpinski triangles
23

S triangle of depth 0: the triangle

p1 p2

p3

Sierpinski
triangles of
depth d-1

Sierpinski triangles
24

s/4

s√⁠3 /2

x

y

Conclusion
25

Recursion is a convenient and powerful way to define
functions

Problems that seem insurmountable can often be solved in a
“divide-and-conquer” fashion:

¤  Reduce a big problem to smaller problems of the same
kind, solve the smaller problems

¤  Recombine the solutions to smaller problems to form
solution for big problem

http://codingbat.com/java/Recursion-1

