
RECURSION 
 (CONTINUED) 

Lecture 9 
CS2110 – Fall 2017 



Prelim one week from Thursday 

1.  Visit Exams page of course website, check what time 
your prelim is, complete assignment P1Conflict ONLY 
if necessary. So far 54, people completed it! 

2.  Review session Sunday 1-3. Kimball B11. Next 
week’s recitation will also be a review. 

3.  A3 is due 3 days from now, on Friday.  

4.  If appropriate, please check the JavaHyperText 
before posting a question on the Piazza. You can get 
your answer instantaneously rather than have to wait 
for a Piazza answer. “default”, “access”, “modifier”, 
“private” are well-explained the JavaHyperText . 



Why is the product of an empty bag of values 1? 
Suppose bag b contains 2, 2, 5 and p is its product: 20. 
Suppose we want to add 4 to the bag and keep p the product. 
We do: 
         insert 4 in the bag; 
         p= 4 * p; 

Suppose bag b is empty and p is its product: what value? 
Suppose we want to add 4 to the bag and keep p the product. 
We do the same thing: 
         insert 4 in the bag; 
         p= 4 * p; 

For this to work, the product of the empty bag has to be 1, 
since 4 = 1 * 4 

// invariant: p = product of c[0..k-1]
 what’s the product when k == 0? 



0 is the identity of + because    0 + x = x 
1 is the identity of * because    1 * x = x 
false is the identity of ||  because      false || b  = b 
true is the identity of && because   true && b  = b 
1 is the identity of gcd because    gcd({1, x}) = x 
For any such operator o, that has an identity, 
o of the empty bag is the identity of o. 
Sum of the empty bag = 0 
Product of the empty bag = 1 
OR (||) of the empty bag = false. 
gcd of the empty bag = 1 
 
 gcd: greatest common divisor of the elements of the bag 



Primitive vs Reference (or class) Types 
5 

Primitive Types: 
char
boolean
int
float
double
byte
short
long

 

Reference Types: 
Object
JFrame
String
PHD
int[]
Animal
Animal[]
... (everything else!)

 
 A variable of the type contains: 

A value of that type A pointer to an object of that type 



== vs equals
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Once you understand primitive vs reference types, there are only 
two things to know: 
 

 a == b compares a and b’s values 
 for a, b of some reference type, use == to determine 
 whether a and b point to the same object. 

 
 a.equals(b) compares the two objects using method equals 

 
 The value of a.equals(b) depends on the  specification of 
 equals in the class! 

 
 



== vs equals: Reference types 
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For reference types, p1 == p2 
determines whether p1 and p2 contain 
the same reference (i.e., point to the 
same object or are both null). 
 
p1.equals(p2) tells whether the objects 
contain the same information (as 
defined by whoever implemented 
equals). 

p1  a0

p2  a0

p3  a1

p4  null

p2 == p1 
p3 == p1 
p4 == p1 

Pt a0 = new Pt(3,4);
Pt a1 = new Pt(3,4);

p2.equals(p1) 
p3.equals(p1) 
p4.equals(p1) 

true 
false 
false 

true 
true 
NullPointerException! 
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1. Push frame for call onto call stack. 

2. Assign arg values to pars. 

3. Execute method body. 

4. Pop frame from stack and (for a 
function) push return value on the stack. 

For function call: When control given back 
to call, pop return value, use it as the value 
of the function call. 

public int m(int p) { 
    int k= p+1; 
    return p; 
} 

m(5+2)   
call stack 

  
 
 
     

p ____ 
 
k ____ 

7 

8 

Recap: Executing Recursive Methods 



Recap: Understanding Recursive Methods 
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1.  Have a precise specification 

2.  Check that the method works in the base case(s). 

3. Look at the recursive case(s). In your mind, replace each 
recursive call by what it does according to the spec and 
verify correctness. 

4. (No infinite recursion) Make sure that the args of 
recursive calls are in some sense smaller than the pars of the 
method 

 

 



Problems with recursive structure 
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Code will be available on the course webpage. 

1.  exp - exponentiation, the slow way and the fast way 

2.  perms – list all permutations of a string 

3.  tile-a-kitchen – place L-shaped tiles on a kitchen floor 

4.  drawSierpinski – drawing the Sierpinski Triangle 

 



Computing bn for n >= 0 
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Power computation: 
¤  b0 = 1 
¤  If n != 0, bn = b * bn-1 
¤  If n != 0 and even, bn = (b*b)n/2 

 

Judicious use of the third property gives far better algorithm 

Example: 38  =  (3*3) * (3*3) * (3*3) * (3*3)  =  (3*3) 4  



Computing bn for n >= 0 
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Power computation: 
¤  b0 = 1 
¤  If n != 0, bn = b bn-1 
¤  If n != 0 and even, bn = (b*b)n/2 

/** = b**n. Precondition: n >= 0 */ 
static int power(double b, int n) { 
   if (n == 0) return 1; 
   if (n%2 == 0) return power(b*b, n/2); 
   return b * power(b, n-1); 
} 

Suppose n = 16 
Next recursive call: 8 
Next recursive call: 4 
Next recursive call: 2 
Next recursive call: 1 
Then 0 

16 = 2**4 
Suppose n = 2**k 
Will make k + 2 calls 



Computing bn for n >= 0 
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/** = b**n. Precondition: n >= 0 */ 
static int power(double b, int n) { 
   if (n == 0) return 1; 
   if (n%2 == 0) return power(b*b, n/2); 
   return b * power(b, n-1); 
} 

Suppose n = 16 
Next recursive call: 8 
Next recursive call: 4 
Next recursive call: 2 
Next recursive call: 1 
Then 0 

16 = 2**4 
Suppose n = 2**k 
Will make k + 2 calls 

If  n = 2**k 
k  is called the logarithm (to base 2) 
of  n:   k = log n  or  k = log(n) 



Difference between linear and log solutions? 
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/** = b**n. Precondition: n >= 0 */ 
static int power(double b, int n) { 
   if (n == 0) return 1; 
   if (n%2 == 0) return power(b*b, n/2); 
   return b * power(b, n-1); 
} 

/** = b**n. Precondition: n >= 0 */ 
static int power(double b, int n) { 
   if (n == 0) return 1; 
   return b * power(b, n-1); 
} 

Number of recursive 
calls is n 

Number of recursive 
calls is ~ log n. 

To show difference, 
we run linear 
version with bigger 
n until out of stack 
space. Then run log 
one on that n. See 
demo. 



Table of log to the base 2 
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k  n = 2^k  log n (= k) 
 0      1       0 
 1     2    1 
 2     4    2 
 3     8    3 
 4    16    4 
 5    32    5 
 6    64    6 
 7   128    7 
 8   256    8 
 9   512    9 
10    1024   10 
11    2148   11 
15   32768   15 



Permutations of a String 
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perms(abc): abc, acb, bac, bca, cab, cba 

abc acb
bac bca
cab cba  

Recursive definition: 
 Each possible first letter, followed by all permutations of 
 the remaining characters. 



Tiling Elaine’s kitchen 
17 

Kitchen in Gries’s house: 8 x 8. Fridge sits on one of 1x1 squares 
His wife, Elaine, wants kitchen tiled with el-shaped tiles –every 
square except where the refrigerator sits should be tiled. 

8 

8 /** tile a 23 by 23 kitchen with 1 
      square filled. */  
public static void tile(int n) 
 
We abstract away keeping track 
of where the filled square is, etc. 



Tiling Elaine’s kitchen 
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/** tile a 2n by 2n kitchen with 1 
      square filled. */  
public static void tile(int n) { 
 
 
 
 
} 
 
We generalize to a 2n by 2n kitchen   

Base case? 

if (n == 0) return;  



Tiling Elaine’s kitchen 
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/** tile a 2n by 2n kitchen with 1 
      square filled. */  
public static void tile(int n) { 
 
 
 
 
} 
 
 
n  > 0. What can we do to get kitchens of size 2n-1 by 2n-1   

if (n == 0) return;  2n 

2n 



Tiling Elaine’s kitchen 
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/** tile a 2n by 2n kitchen with 1 
      square filled. */  
public static void tile(int n) { 
 
 
 
 
} 
 
 

We can tile the upper-right 2n-1 by 2n-1 kitchen recursively. 
But we can’t tile the other three because they don’t have a filled 
square. 
What can we do? Remember, the idea is to tile the kitchen! 

if (n == 0) return;  



Tiling Elaine’s kitchen 
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/** tile a 2n by 2n kitchen with 1 
      square filled. */  
public static void tile(int n) { 
 
  
 
 
 
 
 
} 

if (n == 0) return; 
Place one tile so that each kitchen 
has one square filled; 
 
 Tile upper left kitchen recursively; 
Tile upper right kitchen recursively; 
Tile lower left kitchen recursively; 
Tile lower right kitchen recursively; 
 



S triangle of depth 2:  3 S 
triangles of depth 1 drawn at 
the 3 vertices of the triangle  

Sierpinski triangles 
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S triangle of depth 0 

S triangle of depth 1:  3 S triangles of 
depth 0 drawn at the 3 vertices of the 
triangle  



S triangle of depth d at 
points p1, p2, p3: 

3 S triangles of depth d-1 
drawn at at p1, p2, p3 

Sierpinski triangles 
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S triangle of depth 0:  the triangle 

p1 p2 

p3 

Sierpinski 
triangles of 
depth d-1 



Sierpinski triangles 
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s/4 

s√⁠3 /2 

x 

y 



Conclusion 
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Recursion is a convenient and powerful way to define 
functions 

Problems that seem insurmountable can often be solved in a 
“divide-and-conquer” fashion: 

¤  Reduce a big problem to smaller problems of the same 
kind, solve the smaller problems 

¤  Recombine the solutions to smaller problems to form 
solution for big problem 

http://codingbat.com/java/Recursion-1 


