CS/ENGRD 2110
FALL 2017

Announcements
==
o Search Piazza for your question (before posting)!
o Partner-finding event:
Tuesday, September 12 at 5:30pm
Phillips 203

There will be snacks!

Classes we work with today
| 5 |

Work with a class Animal and subclasses
like Cat and Dog

Put components common to animals in Animal

a0 El

Animal Animal
class hierarchy: age (50 \; age [67] Iﬂ

Object isOlder(Animal) isOlder(Animal)

Animal & I%

getNoise() toString() || getNoise() toString()
getPurrs()

Dog Cat

Object partition is there but not shown

07/09/2017

|2

o Quick look at arrays array
o Casting among classes cast
o Operator instanceof

1 Function getClass

1 Function equals

o compile-time reference rule

while (<bool expr>) { ... }

for (int k= 0; k <200; k=k+1) { ...

Overview ref in JavaHyperText

Homework. JavaHyperText while-loop for-loop

} // example

// syntax

Before Next Lecture...
==

o Follow the tutorial on abstract classes and
interfaces, and watch the videos.

Abstract classes and inte|

Why make a class and a method ai

We expiin what an o
Make 3 coss abstract
/ Hake o method absrd
(.5 minutes) Read

What is an interface?
We explain
methods or

Click these

possible or
impleme

casting

Animal[] v= new Animal[3];

declaration of

Create array
array v of 3 elements

Assign value of
new-exp to v

Assign and refer to elements as usual:

v[0]= new Animal(...);

d= v[0].getAge();

Sometimes use horizontal
picture of an array:

V1

Animal[]
0| null
1| null
2| null
0 1 2

« o] |

07/09/2017

Which function is called?

‘Which function is called by
v[0].toString() ?

(Remember, the hidden Object
partition contains toString().)

a0

0 1 2

ERETREI

al

age [[57] |Animal

Bottom-up or isOlder(Animal)

overriding rule

age ll—l Animal

isOlder(Animal)

says function Cat

toString in Cat +—ttoString() getNoise()

partition getPurrs()

Dog
toString() getNoise()

Consequences of a class type

Animal[] v; declaration of v. Also means that each
variable v[k] is of type Animal
The type of v is Animall] 0 1 2

v{a0 | null

AMects

The type of each v[k] is Animal
The type is part of the syntax/grammar of
the language. Known at compile time.

A variable’s type:
* Restricts what values it can contain.
* Determines which methods are legal to call on it.

From an Animal variable, can use only
methods available in class Animal

a.getPurrs() is obviously illegal.

]

From an Animal variable, can use only
methods available in class Animal

Suppose a0 contains an object of a
subclass Cat of Animal. By the rule a .
below, a.getPurrs(...) is still illegal. Animal

Remember, the test for legality is done
at compile time, not while the program
is running. a0

age [[57] |Animal

isOlder(Animal)

When checking legality of a call like
a.getPurrs(...)

since the type of a is Animal, method Cat
getPurrs must be declared in Animal
or one of its superclasses.

getNoise() toString()
getPurrs()

see JavaHyperText: compile-time reference rule

The compiler will give you an error. Animal
a0
5] |Animal
age
When checking legality of a call like g \;
a.getPurrs(...) isOlder(Animal)
since the type of a is Animal, method
getPurrs must be declared in Animal Dog
or one of its superclasses. getNoise() toString()
see JavaHyperText: compile-time reference rule
From an Animal variable, can use only

methods available in class Animal

The same object a0, from the

and an Animal variable

c.getPurrs() is legal

20 because
- getPurrs
age [[57] |Animal is not
isOlder(Animal) available in
class Animal
Cat
getNoise() toString()
getPurrs()

viewpoint of a Cat variable
@]

Animal

a.getPurrs() is illegal

a0

age [[5] |Animal

isOlder(Animal)

Cat
getNoise() toString()
getPurrs()

Rule for determining legality of method call

Rule: c.m(...) is legal and the program will compile ONLY if
method m is declared in C or one of its superclasses.
(JavaHyperText entry: compile-time reference rule.)

@
. Object

C

m(...) must be

declared in one
of these classes L
[c |

07/09/2017

Another example View of object based on the type
Type of v[0]: Animal Each element v[k] is of . .
ype of vi0] Should this call be allowed? type Animal. getPurrs() not in class Animal or
Should program compile? b « v what is Object. Calls are illegal, program
Should this call be allowed? rom vIk]. see only whatisin - does not compile:
Should ile? v[0].getPurrs() partition Animal and
ould program compile? partitions above it. v[0].getPurrs() v[k].getPurrs()
v[k].getPurrs() a0 al c a0 al
. - omponents are - -
age [T [Animal | [gy [Animal in lower age [5 [Animal | ["y [Animal
. . rtitions, but ; i . .
isOlder(Animal) isOlder(Animal) Ic):n’ltls(;r;sth;m isOlder(Animal) isOlder(Animal)

< Cat Dog (()] 1 - 2 . Cat Dog
- o Tt s s | "
0 1 2 | getNoise() toString() getNoise() toString(getNoise() toString()

v{a0 |null [al ||getPurrs() Animal getPurrs() getNoise() toString(

Casting obijects 0 Explicit casts: unary prefix operators
p 5 | |Animal
Object age
You know about casts like: isOlder(Animal) Rule: At run time, an object can be cast to 0
. Animal the name of any partition that occurs 4
(int) (5.0/7.5) Cat within it —and to nothing else. equalso Object
(double) 6 Dog Cat | | getNoise() toString() a0 can be cast to Object, Animal, Cat.
double d=35; // automatic cast getPurrsO An attempt to cast it to anything else age (5] M
ti . .
You can also use casts with class types: al causes dn exception isOlder(Animal)
i Cat) ¢
Animal h= new Cat("N", 5); age [67] M (.) Cat
(Object) ¢ No St
— . i i . . . t! todt
Cat c= (Cat) h; isOlder(Animal) (Animal) (Animal) (Cat) (Object) ¢ getNoise() toString()
getPurrs()
A class cast doesn’t change the object. It Dog = s don't tak " The obiect
. X . . ; ese casts don e any time. The objec
st changes the perspective: how it is c|a0
!/Uiewe dl © perspeciv o getNoise() toString() does not change. It’s a change of perception. C at
. e a0
Implicit upward cast — Example al
age [05T [Animal | — T
. . age
public class Animal { isOlder(Animal) public class Animal {))
/** = "this Animal is older than h" */ [Cat /** = "this is older than h" */ isOlder(Animal)
public boolean isOlder(Animal h) { R L public boolean isOlder(Animal h) { Dog
return age > h.age; getNoise() toString() return age > h.age;
} getPurrs() } getNoise() toString()
Call c.isOlder(d) al Type of h is Animal. Syntactic property.
Variable h is created. al is cast up to age 67 Animal Determines at compile-time what If o method call is legal
class Animal and stored in h components can be used: those . el
isOlder(Animal) available in Animal liie evaisling ks
Upward casts done determines which
automatically when needed Dog implementation is called
h c d getNoise() toString() h
Animal Cat Dog Animal

07/09/2017

Components used from h al
age lIl Animal
public class Animal { .)

/%% = "this is older than h" */ isOlder(Animal)

public boolean isOlder(Animal h) { Dog

return age > h.age;

} getNoise() toString()
h.toString() OK —it’s in class Object partition . By overriding
h.isOlder(...) OK —it’s in Animal partition ruI?, callls

toString() in
h.getPurrs() ILLEGAL —not in Animal Dog partition
partition or Object partition

Animal

Explicit downward cast a0
age [[57] |Animal |
public class Cat extends Animal { isOlder(Animal)
private int purrs;
/** return true iff ob is a Cat and its purrs i Cat
* fields have same values as this */ getNoise() toString()
public boolean equals(Obiject ob) { getPurrs()

2
//{his aCat}
if (! super.equals(ob)) return false; h
Cat c= (Cat) ob ; // downward cast Animal
return purrs == c.getPurrs();

(Dog) ob leads to runtime error.

Don’t try to cast an object to something that it is not!

Method getClass, explicit down cast
a0

public class Cat extends Animal { age [[57] M
private int purrs; isOlder(Animal)
/** return true iff ob is a Cat and its
* fields have same values as this */ purrs Cat
public boolean equals(Object ob) { getNoise() toString()
if (ob.getClass() != getClass()) getPurrs()

return false;
//{hisaCat} h
if (! super.equals(ob)) return false; Animal
Cat c= (Cat) ob ; // downward cast
return purrs == c.aetPurrs();
} <object>.getClass() == <class-name>.class

true iff <object>’s bottom partition is <class-name>

A complete implementation of equals
a0

public class Cat extends Animal { age [[57] M
private int purrs; isOlder(Animal)
/** return true iff ob is a Cat and its
* fields have same values as this */ purrs Cat
public boolean equals(Obiject ob) { getNoise() toString()
if (ob ==null || getPurrs()

ob.getClass() != getClass())

return false; h m
//{hisaCat} Animal
if (! super.equals(ob)) return false;
Cat c= (Cat) ob ; // downward cast
return purrs == c.getPurrs();

Check whether ob is null before calling getClass.

Operator instanceof

a0
Animal
// Both are true. age (5] ‘ﬂ
if (a0 instanceof Cat) ... isOlder(Animal)

if (a0 instanceof Animal) ...
purrs @

// Only the first is true. getNoise() toString()

if (a0.getClass() == Cat.class) ... getPurrs()

if (a0.getClass() == Animal.class) ...

o]

Animal

<object> instanceof <class-name>

true iff <object> has a partition for <class-name>

Opinions about casting

Use of instanceof and downcasts can indicate bad design

DON'T: DO:
if (x instanceof C1)
do thing with (C1) x x.do()
else if (x instanceof C2)
do thing with (C2) x ... where do is overridden in the

else if (x instanceof C3) classes C1, C2. C3
do thing with (C3) x e

But how do | implement equals() ¢

That requires casting!

