
CS/ENGRD 2110
FALL2017
Lecture 4: The class hierarchy; static components
http://cs.cornell.edu/courses/cs2110

1

Announcements
2

¨ A0, HW1 due tonight
¨ Next week’s recitation: loop invariants

You do some
stuff first

for (…) {

…

}

You hope
something is

true

How do you know that your code is correct?

Hoare Triples
3

{P} C {Q}

CodePrecondition
(an assumption)

Postcondition
(property that is true when

after code finishes)

𝑥 = 5 	
 	
 𝑥 = 𝑥 + 1	
 	
 {𝑥 ≥ 5}

𝑥 = 5 	
 	
 𝑥 = 𝑥 − 1	
 	
 {𝑥 ≥ 5}

There are videos to watch before recitation.
Watch them before your recitation.

Where am I? Big ideas so far.
4

¨ Java variables have types (L1)
¤ A type is a set of values and operations on them

(int: +, -, *, /, %, etc.)

¨ Classes define new types (L2)
¤ Methods are the operations on objects of that class.
¤ Fields allow objects to contain data (L3)

public class House {
private int bdrs; // number of bedrooms, >= 0.
private int baths; // number of bathrooms, in 1..5

/** Constructor: number of bedrooms b1, number of bathrooms b2
* Prec: b1 >= 0, 0 < b2 <= 5 */
public House(int b1, int b2);

/** Return number of bedrooms */
public int getBeds() {

return bdrs;
}
/** Return number of bathrooms */
public int getBaths() {

return baths;
}

}

Class House
5

House@af8
Housebdrs 3

baths 1
House(…) getBeds() getBaths()
setBeds(…) setBaths(…)

toString()
equals(Object) hashCode()

Contains other methods!

Class Object
6

public class House {
private int bdrs; // number of bedrooms, >= 0.
private int baths; // number of bathrooms, in 1..5

/** Constructor: number of bedrooms b1, number of bathrooms b2
* Prec: b1 >= 0, 0 < b2 <= 5 */
public House(int b1, int b2);

/** Return number of bedrooms */
public int getBeds() {

return bdrs;
}
/** Return number of bathrooms */
public int getBaths() {

return baths;
}

}

Class Object: the superest class of all
7

House@af8

extends Object {

Java: Every class that does not
extend another extends class
Object.

We often omit the Object
partition to reduce clutter; we
know that it is always there.

toString()
equals(Object) hashCode()

ObjectHousebdrs 3
baths 1

House(…) getBeds() getBaths()
setBeds(…) setBaths(…)

Classes can extend other classes
8

/** An instance is a subclass of JFrame */
public class C extends javax.swing.JFrame {

}

C: subclass of JFrame
JFrame: superclass of C
C inherits all methods
that are in a JFrame

C@6667f34e

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() …

JFrame

C
Object has 2 partitions:
one for JFrame methods,
one for C methods

We saw this in L2!

Accessing superclass things
9

¨ Subclasses are different classes
¤ Public fields and methods can be accessed
¤ Private fields and methods cannot be accessed
¤ Protected fields can be access by subclasses

Keywords: this
10

¨ this keyword: this evaluates to the name of the object in which it
occurs

¨ Makes it possible for an object to access its own name (or pointer)

¨ Example: Referencing a shadowed class field
public class Apartment extends
House {

private int floor;
private Apartment downstairs;

//constructor
public Apartment(int floor,

Apartment downstairs) {
floor= floor;
downstairs = downstairs;

}
}

public class Apartment extends
House {

private int floor;
private Apartment downstairs;

//constructor
public Apartment(int floor,

Apartment downstairs) {
this.floor= floor;
this.downstairs =

downstairs;
}

}
Inside-out rule shows that
field x is inaccessible!

this avoids
overshadowed
field name

Overriding methods
11

Object defines a method
toString() that returns the
name of the object

Apartment@af8

Java Convention: Define
toString() in any class to return a
representation of an object, giving
info about the values in its fields.

New definitions of toString()
override the definition in
Object.toString()

Apartment@af8

toString()
equals(Object) hashCode()

Object

Housebdrs 3
baths 1

House(…) getBeds() getBaths()
setBeds(…) setBaths(…)

Apartmentfloor 2

Apartment(…) isBelow(…)
toString()

upstairs Apartment@f34

Overriding methods
12

toString()

public class Apartment{

…

/** Return a representation of an
Apartment*/

@Override
public String toString() {

return "" +(getBeds() +getBaths())
+ " room apartment on " + floor + "th
floor";

}

} a.toString() calls this method

Apartment@af8

toString()
equals(Object) hashCode()

Object

Housebdrs 3
baths 1

House(…) getBeds() getBaths()
setBeds(…) setBaths(…)

Apartmentfloor 2

Apartment(…) isBelow(…)
toString()

upstairs Apartment@f34

When should you make a subclass?
13

¨ The inheritance hierarchy should reflect modeling
semantics, not implementation shortcuts

¨ A should extend B if and only if A “is a” B
¤ An elephant is an animal, so Elephant extends Animal
¤ A car is a vehicle, so Car extends Vehicle
¤ An instance of any class is an object, so

AnyClass extends java.lang.Object

¨ Don’t use extends just to get access to protected
fields!

When should you make a subclass?
14

¨ Which of the following seem like reasonable
designs?
A. Triangle extends Shape { … }
B. PHDTester extends PHD { … }
C. BankAccount extends CheckingAccount { … }

When should you make a subclass?
15

¨ Which of the following seem like reasonable
designs?
A. Triangle extends Shape { … }

n Yes! A triangle is a kind of shape.

B. PHDTester extends PHD { … }
n No! A PHDTester “tests a” PHD, but itself is not a PHD.

C. BankAccount extends CheckingAccount { … }
n No! A checking account is a kind of bank account; we

likely would prefer:

CheckingAccount extends BankAccount { ... }

Static Methods
16

¨ Most methods are instance methods: every instance
of the class has a copy of the method

¨ There is only one copy of a static method.
There is not a copy in each object.

You should make a method
static if the body does not

refer to any field or method
in the object.

An Example

/** = “this object is below”.
Pre: a is not null. */

public boolean
isBelow(Apartment a){

return this == a.downstairs;
}

/** = “a is below b”.
Pre: b and c are not null. */

public static boolean
isBelow(Apartment b, Apartment a){

return b == a.downstairs;
}

17

Referencing a static method
18

Container for Apartment
contains: objects

public static void main(String[] args) {
Apartment.isBelow(a, b);

}

A@af
Hbdrs 2

floor 4
dstrs A@af

baths 1
A

A@b4
Hbdrs 2

floor 4
dstrs A@af

baths 1
A

isBelow(A)

isBelow(Apartment, Apartment)

isBelow(A)

static: there is only one
copy of the method. It is
not in each object

, static components

Good example of static methods
19

¨ java.lang.Math
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

¨ Or find it by googling

Java 8 Math

Static Fields
20

¨ There is only one copy of a static method.
There is not a copy in each object.

¨ There is only one copy of a static field.
There is not a copy in each object.

What are static fields good for?

public class Apartment extends House {
public static int numAps; // number of Apartments created

}

Use of static variables: Maintain info about created
objects

21

To have numAps contain the
number of objects of class
Apartment that have been
created, simply increment it in
constructors.

/** Constructor: */
public Apartment(…) {

…
numAps= numAps + 1;

}

A@af
Hbdrs 2

floor 4
dstrs A@af

baths 1
A

A@b4
Hbdrs 2

floor 4
dstrs A@af

baths 1
A

numAps 2

numAps stored in the Container
for Apartment
To access: Apartment.numAps

An instance of class Color describes a color in the RGB (Red-Green-
Blue) color space. The class contains about 20 static variables, each
of which is (i.e. contains a pointer to) a non-changeable Color object
for a given color:

public static final Color black = …;
public static final Color blue = …;
public static final Color cyan = new Color(0, 255, 255);
public static final Color darkGray = …;
public static final Color gray = …;
public static final Color green = …;
…

Class java.awt.Color uses static variables
22

public class WhiteHouse extends House{
private static final WhiteHouse instance= new WhiteHouse();

private WhiteHouse() { } // ... constructor

public static WhiteHouse getInstance() {
return instance;

}

// ... methods
}

Uses of static variables:
Implement the singleton pattern

23

WhiteHouse@x3k3

WH

instance

Box for WhiteHouse

Only one WhiteHouse can ever exist.

…

WhiteHouse@x3k3

