
8/29/17	

1	

CS/ENGRD 2110
FALL 2017
Lecture 3: Fields, getters and setters, constructors, testing
http://courses.cs.cornell.edu/cs2110

1

Object-Oriented Programming
2

Classes Objects

A blueprint, plan A house built from the blueprint

Can create many objects from
the same plan (class). Usually,
not all exactly the same.

, a definition

House (houz) n. An object that…

 class House
3

Object is an instance of a house. Contains bdrs (number of
bedrooms) and baths (number of bathrooms)

Methods in object refer to fields in object.

Could have an array of such objects to list the apartments in a
building.

With variables h1 and h2 below,
t1.getBeds() is 2

t2.getBeds() is 4 House@150
House bdrs 2

baths 1
getBeds()
getBaths()
toString()

h1 House@150

h2 House@fa8

House@fa8
House bdrs 4

baths 2
getBeds()
getBaths()
toString()

Class invariants
4

/** An instance maintains info for a house */
public class House {

 private int bdrs; // number of bedrooms, in 0…10

 private int baths; // number of bathrooms, in 1…5

}

Class invariant:
collection of defs of
variables and
constraints on them
(green stuff)

Software engineering principle: Always write a clear,
precise class invariant, which describes all fields.

Call of every method starts with class invariant true
and should end with class invariant true.

Frequent reference to class invariant while
programming can prevent mistakes.

Generate javadoc
5

¨  With project selected in Package explorer, use menu item
Project -> Generate javadoc

¨  In Package Explorer, click on the project -> doc -> index.html

¨  You get a pane with an API like specification of class Time, in
which javadoc comments (start with /**) have been extracted!

¨  That is how the API specs were created.

Class House
6

/** An instance maintains info for a House */
public class House {

 private int bdrs; // number of bedrooms, in 0…10

 private int baths; // number of bathrooms, in 1…5

}

Access modifier private:
can’t see field from outside class
Software engineering principle:
make fields private, unless there
is a real reason to make public

House@150
House bdrs 2

baths 1
getBeds()
getBaths()
toString()

8/29/17	

2	

Getter methods (functions)
7

/** An instance maintains info for a house */
public class House{
 private int bdrs; // number of bedrooms, in 0..10
 private int baths; // number of bathrooms, in 1..5
 /** Return number of bedrooms */
 public int getBeds() {
 return bdrs;
 }
 /** Return number of bathrooms */
 public int getBaths() {
 return baths;
 }
}

}

Spec goes before method.
It’s a Javadoc comment
—starts with /**

House@150
House bdrs 2

baths 1
getBeds()
getBaths()
toString()

Setter methods (procedures)
8

/** An instance maintains info for a house */
public class House{
 private int bdrs; // number of bedrooms, in 0..10
 private int baths; // number of bathrooms, in 1..5

 …

}

No way to store
value in a field!
We can add a
“setter method”

/** Change number of bathrooms to b */
public void setBeds(int b) {
 bdrs= b;
}

setBeds(int) is now in the object

House@150
House bdrs 2

baths 1
getBeds()
getBaths()
toString() setBeds(int)

Do not say
“set field bdrs to b”
User does not know
there is a field. All
user knows is that
House maintains
bedrooms and
bathrooms. Later, we
show an imple-
mentation that
doesn’t have field b
but “behavior” is the
same

Method specs should not mention fields
9

public class House{
 private int bdrs; //in 0..10
 private int baths; //in 1..5
 /** return number of rooms*/
 public int getRooms() {
 return bdrs+baths;
 }

Decide
to change
implemen

-tation

House@150
House bdrs 2

baths 1
getBeds()
getBaths()
toString()

/** return number of rooms*/
public int getRooms() {
 return rooms;
}

public class House{

 private int rooms; // rooms, in

 1..15

House@150
House rooms 3

getBeds()
getBaths()
toString()

Specs of methods stay the same.
Implementations, including fields, change!

A little about type (class) String
10

public class House{
 private int bdrs; // number of bedrooms, in 0..10
 private int baths; // number of bathrooms, in 1..5
 /** Return a representation of this house */
 public String toString() {
 return plural(bdrs) + "," + baths;

 /** Return i with preceding 0, if
 necessary, to make two chars. */
 private String plural(int i) {
 if (i ==1) return "" + i + "bedroom";
 return "" + i + "bedrooms";
 }
 …

}

Java: double
quotes for

String literals

Java: + is
String

catenation

“helper” function is private, so it
can’t be seen outside class

Catenate with empty String to
change any value to a String

Test using a JUnit testing class
11

In Eclipse, use menu item File à New à JUnit Test Case to
create a class that looks like this:

import static org.junit.Assert.*;
import org.junit.Test;

public class HouseTester {
 @Test
 public void test() {
 fail("Not yet implemented");
 }
}

Select HouseTester in
Package Explorer.

Use menu item Run à Run.

Procedure test is called, and
the call fail(…) causes
execution to fail:

Test using a JUnit testing class
12

Write and save a suite of
“test cases” in HouseTester,
to test that all methods in
Time are correct

Store new House object in h.

Give green light if expected value equals
 computed value, red light if not:
assertEquals(expected value, computed value);

public class HouseTester {

 …

 @Test
 public void testSetters() {
 House h= new House();
 h.setBeds(2);
 assertEquals(2, h.getBeds());
 }
}

8/29/17	

3	

Test setter method in JUnit testing class
13

public class HouseTester {

 …

 @Test
 public void testSetters() {
 House h= new House();
 h.setBeds(2);
 assertEquals(2, h.getBeds());
 }
}

HouseTester can have
several test methods, each
preceded by @Test.

All are called when menu
item Runà Run is selected

House@150
House bdrs 2

baths 1
getBeds()
getBaths()
toString()

Constructors —new kind of method
14

public class C {
 private int a;
 private int b;
 private int c;
 private int d;
 private int e;
}

C has lots of fields. Initializing an
object can be a pain —assuming
there are suitable setter methods

C var= new C();
var.setA(2);
var.setB(20);
var.setC(35);
var.setD(-15);
var.setE(150);

But first, must write a new method
called a constructor

C var= new C(2, 20, 35, -15, 150);

Easier way to initialize the fields, in
the new-expression itself. Use:

Constructors —new kind of method
15

/** An object maintains info about a house */
public class House{
 private int bdrs; // number of bedrooms, in 0..10
 private int baths; // number of bathrooms, in 1..5
 /** Constructor: an instance with
 bd bedrooms and bth bathrooms.
 */
 public House(int bd, int bth) {
 bdrs= bd;
 baths= bth;
 }

Purpose of constructor:
Initialize fields of a
new object so that its
class invariant is true

No return type
or void

Name of constructor
is the class name

Memorize!

Precondition: bd in 0..10, bth in 1..5 Need precondition

House@150
House bdrs 2

baths 1
getBeds()
getBaths()
toString()

Revisit the new-expression
16

House@fa8
Time bdrs 0 baths 0

getBeds() getBaths()
toString() setBeds(int)
House(int, int)

Syntax of new-expression: new <constructor-call>

If you do not declare a constructor,
Java puts in this one:
public <class-name> () { }

Evaluation of new-expression:
1. Create a new object of class, with default values in fields

Example: new House(9, 5)

2. Execute the constructor-call

9 5

3. Give as value of the expression
 the name of the new object

House@fa8

How to test a constructor
17

public class HouseTester {
 @Test
 public void testConstructor() {
 House h= new House(9, 5);
 assertEquals(9, h.getBeds());
 assertEquals(5, h.getBaths();
 }
 …
}

Create an object using the constructor. Then check that all
fields are properly initialized —even those that are not
given values in the constructor call

Note: This also checks
the getter methods! No
need to check them
separately.

But, main purpose:
check constructor

18

¨  An object is defined by a class. An object can contain variables
(fields) as well as methods (functions/procedures).

¨  Use comments and javadoc to document invariants and specify
behavior

¨  Generally, make fields private so they can’t be seen from
outside the class. May add getter methods (functions) and
setter methods (procedures) to allow access to some or all
fields.

¨  Use a new kind of method, the constructor, to initialize fields of
a new object during evaluation of a new-expression.

¨  Create a JUnit Testing Class to save a suite of test cases.

Recap

8/29/17	

4	

CS2110 FAQs
19

¨  Lecture Videos: they’re available http://
cornell.videonote.com/channels/1027/videos

¨  Grading Options: S/U is fine by us. Check with your advisor/
major.

¨  Prelim conflicts: Please don’t email us about prelim conflicts!
We’ll tell you at the appropriate time how we handle them.

¨  Other Questions: check course Piazza regularly for
announcements.

Recitation This Week
20

You must read/watch the tutorial BEFORE the recitation:

www.cs.cornell.edu/courses/cs2110/2017fa/online/exceptions/
EX1.html

Get to it from the Tutorials page of the course website.
NOTE THAT THERE ARE SIX WEB PAGES!

Bring your laptop to class, ready to answer questions, solve problems.

During the section, you can talk to neighbors, discuss things, answer
questions together. The TA will walk around and help. The TA will give
a short presentation on some issue if needed.

Homework questions are on the course website. You will have until a
week after the recitation (on a Wednesday night) to submit answers
on the CMS.

Assignments
21

¨  A0 out: Due this Thursday (8/31)
¨  A1 out: Due next Wednesday (9/6)
¨  A2 out: Due the following week (9/13)

22

Write a class to maintain information about PhDs ---e.g. their
advisor(s) and date of PhD.

Objectives in brief:

¨  Get used to Eclipse and writing a simple Java class

¨  Learn conventions for Javadoc specs, formatting code (e.g.
indentation), class invariants, method preconditions

¨  Learn about and use JUnit testing

Important: READ CAREFULLY, including Step 7, which reviews what
the assignment is graded on.

Assignment A1

Assignment A1
23

Groups. You can do A1 with 1 other person. FORM YOUR
GROUP EARLY! Use Piazza Note @5 to search for partner!

CHECK the pinned A1 note on the Piazza every day.

24

