
CS2110 Preparing for Prelim 2 Thursday, 16 Nov 2017

 (Where and When? Thursday, 16 November)

5:30-7:00. Place: TBA: last name begins with M..Z.

7:30-9:00. Place: TBA: last name begins with A..L.

Review session: Sun, 12 Nov., 1-3pm, TBA

Read the Exams page of the course website, as with P1,

for info on conflicts and completing P2Conflict, if

necessary, by the end of Fri, 10 November.

 cs.cornell.edu/courses/CS2110/2017fa/exams.html.

To prepare:

(1) Practice writing programs in Eclipse,

(2) Study JavaHyperText entry “study/work habits”,

(3) Memorize definitions/principles,

(4) Study lecture slides,

(5) Attempt past prelims on the course website, and

(6) Read the optional text or other text.

The overall length and balance of the exam will be

similar to past prelim 2s, but the exam covers only

topics presented on this page. Ignore past prelim-2

questions that touch on topics that are not listed below.

Topics that will NOT be covered: Parsing, I/O,

Lambdas.

Topics to be covered on Prelim 2

The test covers material through lecture 21, on 2 Nov.

0. Everything needed for Prelim 1. Read the Prelim-1

study guide.

1. Loops and recursion. Use of invariants to develop

loops and argue about their correctness. We used these

on searching/sorting algorithms and graph algorithms.

2. Algorithmic complexity. Big-O complexity notation

and the associated definitions. Understand how to derive

a big-O complexity formula for an algorithm, best-

case/worst-case/average complexity, the notion that

what this counts is some sort of "operation we care

about" and not every line of code, etc.

3. How a type can be defined using an interface.

4. Searching and sorting. Know these algorithms:

Linear search, binary search, insertion sort, selection

sort, mergesort, partition algorithm of quicksort,

quicksort, heapsort. “Knowing” means: being able to

develop them given their specifications, using high-

level statements for the parts that massage the array

(e.g. “merge sorted partitions b[h..k] and b[k+1..n]”). If

you don’t understand what we mean, look at the

appropriate lecture notes. Know the average- and worst-

case complexity of these algorithms.

5. Hashing. Hashing as presented in recitation. The

relationship between methods equals and hashcode.

6. Interfaces. Review the interface lecture materials and

make sure you understand the ideas. Specifically

included are interfaces Comparable, Iterator, and

Iterable and how they are used.

7. Java Collections framework. Be familiar with the

standard operations that are supported by common data

structures implementing Collection<T>, List<T>,

Set<T>, Map<K,V>, ArrayList<T>, etc.

8. Trees: Trees, binary trees, data structures for binary

and non-binary trees, BSTs. Expression trees and their

traversals: preorder, inorder, postorder. Tree rotations,

AVL trees, and parsing are not covered.

Understand min-heaps, how a min-heap can be used to

implement a priority queue, and how a max-heap is used

in heapsort.

9. Graphs. Kinds of graphs (e.g. planar, sparse, dense).

Adjacency matrix vs adjacency list. DFS and BFS,

topological ordering, Dijkstra’s shortest-path algorithm,

spanning trees. Be able to write DFS and BFS given a

specification. Expect questions that involve graphs: be

able to tell us which algorithm is the best choice for

solving a problem, precisely what that algorithm does,

why it would solve a problem, and how costly it might

be.

10. GUIs. We will not ask you to write GUI programs.

We may ask you to read and understand small sections

of code that place components using the usual (JFrame,

JPanel, Grid, Box, and layout managers. Know the three

steps required to listen to events (see lecture slides).

11. Generics. Understand how to make a class or a

method generic. Be able to explain why ArrayList

<Integer> is not a subclass of ArrayList<Object>.

12. Keep in mind the following:

A. Being able to write correct Java code is critical.

We will continue to have coding questions. We plan to

grade them with a bit more insistence on correct Java.

You may lose credit for code that is long, is inefficient,

or reveals a poor grasp of Java features.

B. We expect you to know Java and our coding

guidelines —not just the bits and pieces of Java used on

slides in class. If there is some aspect of Java that

worries you, read the appropriate entry in the

JavaHyperText, study our Code style guidelines on the

course website, google it.

C. Use the powerful built-in Java tools. We give

maximum credit for concise, elegant code that doesn’t

reinvent the wheel. Know how to use standard Java

classes like ArrayList, HashSet, and HashMap and

know the basic methods available for Collections,

arrays, Strings, etc.

