Name: NetID:

Prelim 2 Solution

CS 2110, April 26, 2016, 5:30 PM

1 2 3 4 5 Total
Question | True/False | Complexity | Heaps | Trees | Graphs
Max 10 30 20 20 20 100
Score
Grader

The exam is closed book and closed notes. Do not begin until instructed.
You have 90 minutes. Good luck!

Write your name and Cornell NetID at the top of every page! There are 5 questions
on 10 numbered pages, front and back. Check that you have all the pages. When you
hand in your exam, make sure your pages are still stapled together. If not, please use our
stapler to reattach all your pages!

We have scrap paper available. If you do a lot of crossing out and rewriting, you might
want to write code on scrap paper first and then copy it to the exam so that we can make
sense of what you handed in.

Write your answers in the space provided. Ambiguous answers will be considered incor-
rect. You should be able to fit your answers easily into the space provided.

In some places, we have abbreviated or condensed code to reduce the number of pages
that must be printed for the exam. In others, code has been obfuscated to make the
problem more difficult. This does not mean that its good style.

Academic Integrity Statement: I pledge that I have neither given nor received any
unauthorized aid on this exam.

(signature)

1 of 10

Name: NetID:

1. True / False (10 points)

Circle T or F in the table below.

a) | T | F | A bipartite graph is always planar.

b) | T | F | Suppose a and b are objects. If a.equals(b) evaluates to true, then

a.hashCode() == b.hashCode() must also evaluate to true.

c) | T|F | Suppose a and b are objects. If a.equals(b) evaluates to false, then
a.hashCode() == b.hashCode() must also evaluate to false.

d) | T | F | The vertices of a finite graph can be topologically sorted if and only if the graph is
acyclic.

e) | T | F | In the worst case, insertion sort and quick-sort have the same run time.

f) | T | F | HashSet<String> is a subtype of HashSet<Object>, just as String[] is a subtype
of Object[].

g) | T |F | Method m() processes a list of size n using nested for loops. Therefore, the run
time of m() is O(n?).

h) | T | F | If a graph will have thousands of vertices, each having at most 5 neighbors, you
should implement the graph using a matrix rather than adjacency lists.

i) | T | F | A method that computes a result in O(n) time will always run faster than a
method that computes a result in O(n?) time.

j) | T | F | A connected graph with n nodes has at least n — 1 edges.

2 of 10

Name: NetID:

2. Complexity (30 points)

(a) 4 points For each of the functions f below, state the function g(n) such that f(n) is
O(g(n)). g(n) should be as simple and tight as possible. For example, one could say that
f(n) =2n%is O(n®) or O(2n?), but the best answer, the answer we want, is O(n?).

(i) f(n)=5logn—+n g(n) =n
(i) f(n)=2n+3000n+4 g(n)=n
(iii) f(n) =9nlogn + = g(n) = n?
(iv) f(n) =100+5/n g(n) =vn

(b) 4 points Recall that we proved in recitation that f(n) = n + 6 is O(n). In a similar
manner, prove that f(n) = 3n? + 200n is O(n?).

3n"2 + 200n (this is f(n)
<= <assume n >= 200>

3n"2 + n*n
= <arithmetic>

4n~2 (this is 4g(n)

So, with N = 200 and ¢ = 4, for all n >= N, f(n) <= ¢ g(n)
Q.E.D.\ (meaning Quit, End, Done)

(c) 4 points What is the simplest and tightest time-complexity class of the following func-
tion? For example, if the function takes 2n? time, write O(n?). Be carefull Consider the
complexity of all operations and function calls below.

/** Return the max of the values in list.
* Precondition: list.size() > 0 */
public static int max(LinkedList<Integer> list) {
int max= Integer.MIN_VALUE;
int n= list.size();
for (int i= 0; i < n; i++) {
int current= list.get(i);
if (current > max) max= current;
}

return max;

}

The runtime of this function is O(n?). Note that 1ist.get (i) takes O(z) time for a LinkedList

3 of 10

Name: NetID:

(d) 6 points For each of the following tasks, state the expected and worst-case time com-
plexity. If the expected and worst-case time complexities are different, describe a situation in
which the task will take the worst-case time.

(i) (2 points) Use quick-sort to sort an array of size n.

Expected run time: O(nlogn) Worst-case run time: O(n?)
Suppose the smallest element in the array segment is selected as the pivot each time.
Now the depth of the recursion is n with each level taking O(n) time.

(ii) (2 points) Search for a value in a sorted array of size n.
Expected run time: O(logn) Worst-case run time: O(logn)
(iii) (2 points) Check if a hash set of size n contains a particular value.

Expected run time: O(1) Worst case run time: O(n)

Suppose all of the elements in the set hash to the same value. Now every element is in
the same linked list (if implemented with chaining) or every check will need to probe
every occupied slot (if implemented with open addressing) to conclude an element is not
present.

(e) 12 points Suppose we need to choose a data structure to store a changing collection
of values. For each of the usage patterns listed below, mark an “X” in the following table
to indicate which data structure serves that usage pattern best in terms of average-case time
complexity. There is exactly one best data structure for each usage pattern.

Usage Pattern | ArrayList | LinkedList | HashSet | Balanced BST | Heap
X

X

The usage patterns: Note: BY LinkedList we mean a singly linked list
(i) (2 points) Adding and removing elements from indices clustered near the end of the
collection

2 points) Removing certain elements while iterating through all elements (and preserving
he ordering of the remaining elements).

(vi

(ii) (2 points) Processing the elements in sorted order
(iii) (2 points) Processing the elements in a priority order
(iv) (2 points) Retrieving elements at several unpredictable indices
(v) (2 points) Checking if the collection contains various values
) (
t

4 of 10

davidgries
Typewritten Text
Note: BY LinkedList we mean a singly linked list

Name: NetID:

3. Heaps (20 points)

Consider creating a max-heap of ints by adding the following elements in the order presented:
24, 10, 25, -3, 4, 71, 13
(a) 8 points Below, draw the resulting heap as a tree.

Note: If you provide a valid heap for these values but not the one that arises from adding the
elements in order, you get 2 points and can still get full credit for the subsequent problems.

Solution

(b) 6 points Draw the heap you provided as an array in the table below.
Solution

71 10 24 13

[\
ot
|
w
=~

(c) 4 points Now we change the value of the element with value 25 to -1. Repair the heap
you presented using the operations from class and draw the resulting heap as a tree below.
Note: If you provide a valid heap for these values but not the one that arises from performing
this operation, you get 1 point and can still get full credit for the subsequent problem.

Solution
& O @

(d) 2 points Draw the heap you provided as an array in the table below.
Solution

| 0 1 2 3 4 5 6
71 10 24 -3 4 -1 13

5 of 10

Name: NetID:

4. Trees (20 points)

{ IS
\ k /
N w77
(a) T m)
A A
/ 4) e g
/ &
) P < \?/-- . e T
Cd | b) 3: | X
AN b / b
A N N S
\ rd
N ——. //
7N TN
(C) ([n /
N4 AN A

(a) 2 points Is the tree above balanced?
The tree is not balanced

(b) 6 points Provide the pre-order, post-order, and in-order traversals of the tree above.
Specifically, list the order in which the nodes of the tree are processed in each traversal. You
should represent a node by the letter it contains, but please leave at least one space between
letters for readability (e.g. a b ¢, not abc).

(i) (2 points) Pre-Order:
kadcbmlzxnp

(ii) (2 points) Post-Order:
cdbalpnzxmk

(ili) (2 points) In-Order:
dcabklmnpx

6 of 10

Name: NetID:

(c) 4 points Draw the BST (binary search tree) resulting from adding the following values
one by one to an empty tree:

e, h, c, g, a, £f,d, Db
Note: If you provide a valid BST for these values but not the one that arises from adding

the elements in order, you get 1 point.
Solution

7 of 10

Name: NetID:

(d) 8 points Now that you have practiced adding values to a BST, implement method add
of class BSTNode below.

/** An instance of this class represents a Binary Search Tree */

public class BSTNode {
private int value; // the element of this BSTNode
private BSTNode left; // left child of this BSTNode (null for an empty tree)
private BSTNode right; // right child of this BSTNode (null for an empty tree)

/** Constructor: a binary search tree containing only e */
public BSTNode(int e) {
value= e;

}

/** Add e to this binary search tree.
* If e is already in this tree, do nothing */
public void add(int e) {

if (e == value) return;
if (e < value) {
if (left == null) {
left = new BSTNode(e);
return;
+
left.add(e);
return;
+
if (right == null) {
right = new BSTNode(e);
return;
+
right.add(e);

8 of 10

Name: NetID:

5. Graphs (20 points)

(a) 10 points You are given a (weighted) directed graph, duplicated in the first column
below for each subproblem so that you may mark it up with notes (which will be ignored by
the graders). For each subproblem, write your answer in the second column, NOT THE FIRST
COLUMN! When you need to choose among vertices to visit first, choose in alphabetical order.

(i) (3 points) In what order are the nodes
visited by DFS, starting from vertex a?
agebcdfh

(ii) (3 points) In what order are the nodes
visited by BFS, starting from vertex a?
agehbdfc

(iii) (4 points) In what order are the
nodes removed from the frontier in Dijk-
stra’s algorithm, starting from vertex a?
agedfbhc

9 of 10

Name:

NetID:

(b) 10 points

The graph algorithms we have covered have applications beyond the problems

for which they were originally intended. For example, although DFS and BFS are search
algorithms, they are just ways to traverse a graph. So besides reachability, they can be used
for distance calculation and cycle detection. And, topological sort can be used to determine
shortest paths in DAGs.

For each problem listed below, mark an “X” in the following table to indicate which graph
algorithm solves the problem best in terms of worst-case time complexity. There is exactly one
best graph algorithm for each problem.

DFS | BFS

X

Problem | Topological sort Dijkstra

X

The problems:

(i)

(i)

(i)

(iv)

(2 points) You have a database of U.S. cities. For each pair of cities, it indicates whether a
direct flight exists between them. You have to write a program to calculate the minimum
number of connections needed to fly from one city to another. For example, you can’t fly
from Ithaca to San Francisco directly, but you can fly to Philadelphia and then to San
Francisco, so the minimum number of connections is 1.

(2 points) You have a list of courses you want to take at Cornell. Some are prerequisites
of others. You want to find a sequence in which to take these classes without violating
any prerequisite requirement.

(2 points) You are intrigued by the concept of “six degrees of separation”: any two people
on the planet are connected through at most five intermediate acquaintances. You want
to test this theory at Cornell. You have a database that tells you whether any two Cornell
students are friends. You want to find a student who is “furthest away” from you, i.e. the
minimum number of intermediate friends needed to relate that student to you is greater
than or equal to that of any other student.

(2 points) You are traveling on a desert. Your map gives the locations of oases, and you
can calculate the distance between any two of them. You can walk only k& miles without
stopping at an oasis before you dehydrate, and every mile takes you an hour to hike.
You are standing at the northernmost oasis. You want to determine how to most quickly
reach the southernmost oasis without dehydrating.

(2 points) You are a maze designer, and you want to make sure your preliminary design
isn’t too challenging. Write a program that, assuming there are no cycles, determines
the length of the longest path from the maze’s entrance that doesn’t eventually lead to
the maze’s exit.

10 of 10

