
Name: NetID:

Prelim 2

CS 2110, 16 November 2017, 7:30 PM

1 2 3 4 5 6 7 Total
Question Name Short

answer
Heaps Tree Collections Sorting Graph

Max 1 18 10 25 10 16 20 100
Score
Grader

The exam is closed book and closed notes. Do not begin until instructed.

You have 90 minutes. Good luck!

Write your name and Cornell NetID, legibly, at the top of every page! There are 6 questions
on 8 numbered pages, front and back. Check that you have all the pages. When you hand in
your exam, make sure your pages are still stapled together. If not, please use our stapler to
reattach all your pages!

We have scrap paper available. If you do a lot of crossing out and rewriting, you might want
to write code on scrap paper first and then copy it to the exam so that we can make sense of
what you handed in.

Write your answers in the space provided. Ambiguous answers will be considered incorrect.
You should be able to fit your answers easily into the space provided.

In some places, we have abbreviated or condensed code to reduce the number of pages that
must be printed for the exam. In others, code has been obfuscated to make the problem more
difficult. This does not mean that it’s good style.

Academic Integrity Statement: I pledge that I have neither given nor received any unau-
thorized aid on this exam. I will not talk about the exam with anyone in this course who has
not yet taken Prelim 2.

(signature)

1. Name (1 point)

Write your name and NetID, legibly, at the top of every page of this exam.

1 of 8

Name: NetID:

2. Short Answer (18 points)

(a) True / False 8 points Circle T or F in the table below.

(a) T F If x.equals(y) returns false, then x.hashCode() != y.hashCode()

evaluates to true.
(b) T F ArrayList<String> is a subtype of ArrayList<Object>. (Recall that

String[] is a subtype of Object[].)
(c) T F The expected time complexity to search for a value in a binary tree is

O(log n), assuming n is the number of nodes in the tree.
(d) T F A connected graph with n nodes has at least n edges.
(e) T F A JButton in a GUI must be “listened to” by only one actionPerformed

procedure, which defines what happens when the button is clicked.
(f) T F Breadth-first search maintains a queue of nodes that have been visited.
(g) T F The worst-case time complexity to compute the out-degree of a node is

asymptotically slower for the adjacency-list representation of a graph than
for the adjacency-matrix representation.

(h) T F Quicksort is unstable.

(b) 6 points Choose the tightest asymptotic complexity from O(n2), O(n), O(n logn), and
O(logn) for the following snippets of code:

1. for (int i= 1; i < n; i= i+1) {

for (int j= i; j > 1; j= j/2) {

count++;

}

}

Answer:

2. for (int i= 1; i < n; i= i+1) {

str= str + i; // str is an instance of String

}

Answer:

(c) 4 points Hashing. The array to the right, of size
5, is an implementation of a hash set. The table below
it shows each element’s hashCode. Answer questions (1)
and (2) below. Each is independent of the other. Do not
be concerned with resizing the array.

0 1 2 3 4
hashset a c b

element a b c d
hashCode 0 9 16 14

(1) 2 points. List the bucket indexes that linear probing will probe if d is inserted into the
hash set.

(2) 2 points. List the bucket indexes that quadratic probing will probe if d is inserted into
the hash set.

2 of 8

Name: NetID:

3. Heaps (10 Points)

This question explores parts of algorithm heapsort, which sorts array
c shown to the right. We use the identifier m for the expression
c.length, and you can too.
In these programming problems, you may write swap x and y

instead of the real Java statements to swap the two variables.

(a) 5 points Assume that 0 <= j < m and that c[0..j-1] is a
max-heap, as shown to the right. State in one (short) sentence what
has to be done to make c[0..j] into a heap. Details are not wanted;
just state what has to be done.

(b) 5 points Write the body of method sortHeap, given below. It
will use a loop, and its loop invariant is shown to the right. You
may assume the existence of the following function:

/** Bubble c[0] down to its appropriate position

in c[0..j-1].

Precondition: c[0..j-1] is a max-heap except

that c[0] may be out of place. */

public static void bubbleDown(int[] c, int j) { }

/** Sort c. Precondition: c is a max-heap. */

public static void sortHeap(int[] c) {

}

?c

0 m

?c max-heap

0 j m

sorted
>=

c max-heap

<=

0 j m

loop invariant.
Note that it says that
c[0..j-1] <= c[j..m-1]

3 of 8

Name: NetID:

4. Trees (25 Points)

(a) 4 points
Write down the inorder traversal sequence and postorder
traversal sequence for the tree to the right.

c d

b

a

e f

(b) 8 points
Class TNode, to the right, is used in
building binary trees. Complete re-
cursive function areDifferent below.
(Trees p and q are the different if they
have different structure or if the value
of any node is different.)

public class TNode {

String val; // value stored in the node

TNode left; // left subtree (null if empty)

TNode right; // right subtree (null if empty)

}

/** Return true if trees p and q are different trees.

Note: p == null or q == null denotes an empty tree. **/

public boolean areDifferent(TNode p, TNode q) {

}

What is the tightest worst-case time complexity of this function in terms of np and nq, the
number of nodes in trees p and q? Circle one of these possibilities:

O(np) O(nq) O(np + nq) O(max(np, nq)) O(min(np, nq))

4 of 8

Name: NetID:

(c) 10 points Complete the recursive function isBST, below.

/** Return true iff t is a binary search tree in which all values are greater

* than s1 and less than s2 using lexicographic ordering ---all values are

* strictly between s1 and s2.

* Note: String implements Comparable. You may use String method compareTo. */

* Note: t = null denotes the empty tree. */

public static boolean isBST(TNode t, String s1, String s2) {

}

(d) 3 points Draw the BST by starting with an empty BST and inserting these values, one by
one, into it: [j, a, b, x, u, v]. Use the conventional dictionary ordering of characters.

5 of 8

Name: NetID:

5. Collections and Interface (10 Points)

Answer these questions based on the part of Java collections framework shown in the diagram below.
In this picture, italic font indicates an Interface, and bold font indicates a non-abstract class.

Collection〈E〉

Set〈E〉

HashSet〈E〉

List〈E〉

LinkedList〈E〉 ArrayList〈E〉

Map〈K, V〉

HashMap〈K, V〉

(a) 2 points Does the following statement compile? If not, explain why.
Set〈Integer〉 s= new Set<>();

(b) 3 points Let h have type HashSet〈E〉 and ll have LinkedList〈E〉. What are the worst-case
time complexities of h.add(e), ll.add(e), and ll.add(k, e) for some object e, assuming there
are n elements in the set or list?

(c) 5 points Class HashSet〈E〉 contains the following method:

/** Add e to this set if it is not in the set.

Return true iff e was added. */

public boolean add(E e) { ... }

Assume method contains is not in class HashSet〈E〉. Implement the following function using
function add. It should take expected time O(1). You can use other HashSet methods, but no loops.

/** Return true iff s contains x */

public static boolean contains(HashSet<String> s, String x) {

}

6 of 8

Name: NetID:

6. Sorting (12 Points)

(a) 4 points For each of the following sorting algorithms, fill in their tightest expected space and
time complexity in terms of big O. For Quick Sort, assume it is the version that reduces the space
as much as possible.

Quick Sort Merge Sort
Expected Space Complexity
Expected Time Complexity

(b) 8 points To the left is a framework of mergeSort. On the right are the precondition and
postcondition of method merge.

/** Sort b[h..k-1] */

public void mergesort(int[] b, int h, int k) {

if (k - h <= 2) return;

int t= (h + k) / 2;

mergeSort(b, par1, par2);

mergeSort(b, par3, par4);

merge(b, h, t, k-1);

}

h k

h kt

precondition of method merge

postcondition of merge

Sorted Sorted

Merged, Sorted

(1) 4 points. Above, the recursive calls to mergeSort have missing arguments, denoted
by par1, par2, par3, par4. Write what they should be according to the pre- and post-
condition of merge.

par1 par2 par3 par4

(2) 2 points. There is an error in the above code. Explain what is wrong and give the
corrected version. and the corrected version.

(3) 2 points. The statement int t = (k + h) / 2; would be better written as
int t = h + (k - h) / 2;. Explain the reason in one sentence.

7 of 8

Name: NetID:

7. Graphs (20 Points)

(a) 8 points Answer questions based on the graph to the right.
(1) 2 points Show the topological sorting sequence for the graph.

(2) 4 points Complete the adjacency list for the graph, in the format
shown for node c, which we provided. The order of nodes in a list does not
matter,

a →
b →
c → d → null
d →
e →

(3) 2 points What is the minimal number of edges you can add to this
graph to make it nonplanar?

a

b

cd

e

(b) 4 points State the theorem that is proved about the invariant in our development of Dijk-
stra’s shortest path algorithm.

(c) 4 points Here is one algorithm for constructing a spanning tree of a connected graph with
n nodes and e edges: Start with all the nodes of the graph but no edges. Repeat until no longer
possible: Add any edge of the graph that does not introduce a cycle. How many edges will this
algorithm add?

(d) 4 points Complete the following method. Make it recursive. You can write “visit n” without
explaining how to visit a node and “n is visited” or “n is unvisited” to check whether a node has
been visited. You can also use an English phrase to get all the neighbors of a given node.

/** Visit all nodes reachable along unvisited paths from node v. */

/** Precondition: v has not been visited. */

public void visitNodes(Node v) {

}

8 of 8

