
Name: NetID:

Prelim 1. Solution

CS 2110, 14 March 2017, 5:30 PM

1 2 3 4 5 Total
Question Name Short

answer
OO Recursion Loop

invariants
Max 1 36 33 15 15 100
Score
Grader

1. Name (1 point)

Write your name and NetID at the top of every page of this exam.

2. Short Answer (36 points.)

(a) 5 points. Below are five expressions. To the right of each, write its value.

1. (int)‘b’ == ‘b’ true. Remember that char is a number type.

2. (char)(‘a’ +3) ’d’

3. new Boolean(false) == new Boolean(false) false. Each new-expression creates a new
object, and the pointers to these objects are different.

4. ((Object)(new Integer(3))).equals(3) true

5. k != 0 && 5/k == 8 [note: k is of type int] false. Short-circuit evaluation is used.

(b) 4 points. Consider a class C with a method m. What are the two consequences of making
C and m abstract? Making C abstract means that objects of class C cannot be created. Making
m abstract means that any non-abstract subclass must override m.

(c) 5 points. Function Integer.parseInt(String s) returns the int value of the integer that is in
String s. But if s does not contain an integer, the function throws a NumberFormatException.
Write a statement that stores in variable dn the value of the function call:

Integer.parseInt(somestring)

but stores 1 in dn if a NumberFormatException is thrown.

try {

dn= Integer.parseInt(somestring);

} catch (NumberFormatException e) {

dn= 1;

}

1 of 5

Name: NetID:

(d) 6 points. Put a check mark before each of the following sentences that is correct and an
X before each that is incorrect.

1. A class can extend only one non-abstract class but any number of abstract classes. false

2. All fields in an abstract class must be public. false

3. An abstract class cannot have a constructor because it cannot be instantiated. false

4. If a class implements an interface, its subclasses must not implement that interface. false

5. A local variable declared at the beginning of a method maintains its value from one call
of the method to the next. false

6. Every constructor must start with a call on a super-class constructor. false

(e) 12 points. To the right is class M1 and
its subclass M2. Below is method main of class
M1 —it belongs in class M1.

Execute a call on method main. Write the value
that is printed by each println statement to the
right of that println statement.

public static void main(String[] p) {

M1 a= new M1();

System.out.println(a.x); //ans: 3

System.out.println(a.y); //ans: 100

System.out.println(a.m());//ans: 6

M2 b= new M2();

System.out.println(b.x); //ans: 4

System.out.println(b.y); //ans: 100

System.out.println(b.m());//ans: 105

}

public class M1 {

public int x= 2;

public int y= 100;

public M1(int x) { this.x= x; }

public M1() { this(3); }

public int m() {

return this instanceof M2 ? 5 : 6;

}

}

public class M2 extends M1 {

public M2() { super(4); }

public @Override int m() {

return 100 + super.m();

}

}

(f) 4 points. What is the purpose of a constructor?
What constructor does Java insert into a class C if no constructor is defined in it? The purpose
of a constructor is to initialize fields so that the class invariant is true. If no constructor is
defined in class C, Java inserts this one: public C(){} .

2 of 5

Name: NetID:

3. Object-Oriented Programming (33 points)

(a) 5 points
To the right are classes K1 and K2. Method
m() is not overridden in class K2.

Modify class K1 so that a variable will con-
tain the number of times during execution
that method m() is called as a method of an
object of class K2 (instead of as an object
of class K1 only).

Your modifications should consist of insert-
ing a declaration in class K1 and adding
code at the beginning of method m().

public class K1 {

//no. times m called in a K2 object

static int c;

public void m() {

if (this instanceof K2) c= c+1;

...

}

}

public class K2 extends K1 { ... }

(b) 10 points Below are two class declarations. Complete the bodies of the constructor and
function toString in class Surgeon. Be careful; pay attention to access modifiers.

public class Doctor {

private String name;

/** A doctor named n.

* Precond.: no space in n */

public Doctor(String n) {

name= n;

}

/** Return this doctor’s name */

public String toString() {

return name;

}

}

public class Surgeon extends Doctor {

private int ops; //no. of ops performed

/** Constructor: instance with name n

* and op operations

* Precond.: no space in n */

public Surgeon(String n, int op) {

super(n);

ops= op;

}

/** Return this surgeon’s name, a

* space, and number of operations. */

public String toString() {

return super.toString() + " " + ops;

}

}

(c) 5 points Complete the body of method equals, which belongs in class Doctor.:

/** Return true iff ob is a Doctor and

* ob has the same name as this Doctor. */

public @Override boolean equals(Object ob) {

if (!(ob instanceof Doctor)) return false;

return name.equals(((Doctor)ob).name);

}

(d) 5 points Write down the steps in evaluating a new-expression new C(args) .

1. Create (draw) an instance of class C, with default values for the fields;
2. Execute the constructor call C(args);
3. Return as value of the new-expression the name of (pointer to) the created object.

3 of 5

Name: NetID:

(e) 8 points
Consider the interface and class
declarations given below. Next
to each piece of Java code in the
righthand column, write whether it
produces no error, a run-time error,
or a compile-time error. (Assume
that each piece is independent of the
others.)

Here’s a hint: First draw an object.

interface I1 {...}

interface I2 {...}

interface I3 extends I1 {...}

class C1 implements I1 {...}

class C2 implements I2 {...}

class C3 implements I3 {...}

class C4 extends C3

implements I2 {...}

(a) I2 a= new I2(); // Compile-time error

(b) I2 b= new C2(); // no error

(c) C3 c= new C4(); // no error

(d) C2 d= new C4(); // Compile-time error

(e) C4 e= new C3(); // Compile-time error

(f) C4 f= (C4)(new C3()); // Runtime error

(g) I1 g1= new C1(); // no error

C4 g2= new C4(); // no error

g1= g2; // no error

(h) I1 g1= new C4(); // no error

I2 g2= new C2(); // no error

g2= g1; // Compile-time error

4. Recursion (15 Points)

(a) Write the body of recursive function nf , whose specification and header appear below. Do
not use loops. Use only recursion. Here is a restriction, which should help you hone in on a
simple solution: The only String functions you should use are charAt, length, and substring.

/** Return the number of times the first

* char of s appears at the beginning of s.

* Precondition: s is not null and contains at least 1 char.

* Example: nf("bbbcb$b") = 3.

* Example: nf("bcb$bbb") = 1. */

public static int nf(String s) {

if (s.length() == 1) return 1;

if (s.charAt(0) != s.charAt(1)) return 1;

return 1 + nf(s.substring(1));

}

(b) Below is function comfy. It is complete except for the base-case if-condition. Circle all
possible expressions from the list below that could be used for the base-case if-condition.

1. s.length() < 3 no

2. s.length() ≤ 3 yes

3. s.length() == 3 no

4. Integer.parseInt(s) < 1000 yes

5. s.length() == 0 no

4 of 5

Name: NetID:

/** Return s formatted by adding a comma before every third digit.

* E.g. 1000 is formatted as 1,000, 56 is 56, and 1234567 is 1,234,567.

* Precondition s is a non-signed integer and the leftmost digit is not 0. **/

public String comfy(String s) {

if (base-case if-condition) return s;

return comfy(s.substring(0,s.length()-3)) + ’,’ + s.substring(s.length()-3);

}

5. Loop Invariants (15 points)

(a) 2 points State the formula for the number of values in array segment b[h..k − 1].

k − h // it’s Follower − First

(b) 13 points Consider the following precondition, invariant, and postcondition. The post-
condition has two alternatives —either section b[h..j − 1] or section b[j + 1..k] is empty (the
other one might be, but it is not necessary).

xbPrecondition:

0 j n

??

xbInvariant:

0 h j k n

≥ x≤ x ??

xbPostcondition:

0 j k n

≥ x≤ x ?

xbOR

0 h j n

≥ x≤ x ?

Write a loop with initialization that uses the invariant given above to implement the comment
given below. Thus, the loop should continue as long as both ? sections are non-empty. Assume
that b, j, and n are already initialized. Identifier x can’t be used in the program; it just stands for
the value in b[j]. Don’t declare variables, but do assign appropriate values to h and k wherever
necessary. To swap b[i] and b[j], just say, ”Swap b[i] and b[j].” Your grade depends only on how
well you use the four loopy questions to write the code.

// Given the Precondition as shown above, swap values of array

// segment b[0..n] so that the Postcondition holds.

int h= 0;

int k= n;

while (h < j && j < k) {

if (b[h] <= b[j]) h= h+1;

else { Swap b[h] and b[k]; k= k - 1; }

}

5 of 5

