
Name: NetID:

Prelim 1

CS 2110, September 29, 2016, 7:30 PM

0 1 2 3 4 5 Total
Question Name Loop

invariants
Recursion OO Short

answer
Exception
handling

Max 1 15 15 25 34 10 100
Score
Grader

The exam is closed book and closed notes. Do not begin until instructed.

You have 90 minutes. Good luck!

Write your name and Cornell NetID at the top of every page! There are 5 questions on
8 numbered pages, front and back. Check that you have all the pages. When you hand in
your exam, make sure your pages are still stapled together. If not, please use our stapler
to reattach all your pages!

We have scrap paper available. If you do a lot of crossing out and rewriting, you might
want to write code on scrap paper first and then copy it to the exam so that we can make
sense of what you handed in.

Write your answers in the space provided. Ambiguous answers will be considered incorrect.
You should be able to fit your answers easily into the space provided.

In some places, we have abbreviated or condensed code to reduce the number of pages that
must be printed for the exam. In others, code has been obfuscated to make the problem
more difficult. This does not mean that it’s good style.

Academic Integrity Statement: I pledge that I have neither given nor received any
unauthorized aid on this exam. That includes not talking to the people who took the 5:30
exam.

(signature)

0. Name (1 point)

Write your name and NetID at the top of every page of this exam.

1 of 8

Name: NetID:

1. Loop Invariants (15 points)

(a) 6 points Consider the following precondition and postcondition.

unknowncPrecondition:

m n

x

even oddcPostcondition:

m nt

x

Generalize them, completing the invariant below. Your generalization should introduce a
new variable. Place variables carefully; ambiguous answers will be considered incorrect.

cInvariant:

m n

(b) 9 points Consider the following precondition, postcondition, and invariant.

unknowndPrecondition Q:
0 n

= 5dPostcondition R:

0 n

> 5< 5

unknowndInvariant P:

0 h k t n

> 5< 5 = 5

Below, write a loop with initialization that uses invariant P to implement the comment given
below. Assume d is already initialized. You don’t have to declare variables, but you must assign
appropriate values to h, k, and t where necessary. To swap d[i] and d[j], just say, ”Swap d[i],
d[j].” Your grade depends only on your use of the four loopy questions to write the code.

// Given Precondition Q, swap values of d[0..n] to truthify Postcondition R.

2 of 8

Name: NetID:

2. Recursion (15 Points)

(a) Write the following function occ, in Java. For example, occ(2, ’d’) is ”dd”. You must use
recursion. Do not use a loop. Do not write assert statements for the Precondition.

/** = a String containing n occurrences of c.

* Precondition: n >= 0. */

public static String occ(int n, char c) {

}

(b) Write the following function expand, in Java. Use recursion. Do not use a loop. Do not write
assert statements for the Precondition. You can use function occ. As an example, p(”2A0B3V”)
produces a string with 2 As, 0 Bs, and 3 Vs, i.e. it produces ”AAVVV”.

You will need to convert a character-digit like ’4’ to an int. There are several ways to do
that.

/** Return s but with each pair "ic" of characters, where i is a digit,

* replaced by i occurrences of c.

* Precondition: s contains an even number of characters, and the

* first of each pair is a digit. */

public static String expand(String s) {

}

3 of 8

Name: NetID:

3. Object-Oriented Programming (25 points)

(a) 10 points Below are two class declarations. Complete the bodies of the constructor and
function toString in class Grad. Be careful; pay attention to access modifiers.

public class Student {

private String name;

/** A student named na.

* Precon.: no spaces in na. */

public Student(String na) {

name= na;

}

/** = name of this candidate */

public String toString() {

return name;

}

}

public class Grad extends Student {

private String advisor;

/** Constructor: a grad named

* na with advisor ad.

* Precon.: no spaces in na, ad. */

public Grad(String na, String ad) {

}

/** = String containing grad’s

* name, a comma and space after

* it (", "), and advisor. */

public String toString() {

}

}

(b) 5 points Suppose the following assignment has been executed, where the arguments ...
are strings containing a person’s name and advisor.

Grad g= new Grad(..., ...);

Write a sequence of statements to extract the advisor of the person in object g and store
it in String variable v. You don’t have to declare v or any other variables. It doesn’t matter
whether you wrote methods in part (b) correctly; we go by the method specifications.

4 of 8

Name: NetID:

(c) 5 points Method equals, shown below, is to be placed in class Grad. Complete the method
body. Also, after the method body, write what happens if the type of parameter ob is changed
to Grad.

/** Return true iff ob is a Grad and

* ob has the same advisor as this Grad. */

public @Override boolean equals(Object ob) {

}

(d) 5 points Below are two classes and one interface. Below them, state two reasons why this
won’t compile.

public abstract class A implements I {

public abstract int m();

public int f= 10;

}

public interface I {

}

public class B extends A implements I {

A a= new A();

public void p() {

f= 20;

}

}

5 of 8

Name: NetID:

4. Short Answer (34 points.)

(a) 5 points Write down the steps in executing a method call m(args) .

(b) 5 points. Below are five expressions. To the right of each, write its value.

1. (int)’@’ == ’@’

2. (char) (’d’ - 2)

3. new Double(5) == new Double(5)

4. ((Object)(new Integer(7))).equals(3+4)

5. (int) 3.5 + 4.1

(c) 5 points. Consider these declarations of classes and interfaces:

public class A implements I, J { ... }

public class B extends A implements I { ... }

public interface I { ... }

public interface J { ... }

Consider the statement:

B var= new B(...);

Write down a list of all things to which variable var can be cast.

(d) 6 points. Put a check mark before each of the following sentences that is correct and an
X before each that is incorrect.

1. In a while loop while(B) {int x; ...} , variable x is allocated new space each time the
loop body is executed.

2. In a class class C {public static int y= 5; ...} , every time an expression new C(...)

is evaluated, y is set to 5.

3. To make testing easier, Java allows methods in a JUnit testing class to access private fields
of objects it is testing.

6 of 8

Name: NetID:

4. If a class implements an interface, its subclasses may also implement that interface.

5. During execution of a Java program, the call stack contains at most one frame for each
method.

6. If you don’t start a constructor body with a call on another constructor, your program
will not compile.

(e) 8 points. To the right or below class C2, write the output printed by a call on method
main of class C2 below. Please be extremely careful.

public class C2 {

private int p= 1;

private static int q= 2;

private int m1(int p) { p= q+1; q= q+3; return q; }

private int m2(int q) { p= q+1; q= q+3; return q; }

public static void main() {

C2 c= new C2();

int x= c.m1(5);

System.out.println(x + ", " + c.p + ", " + q);

q= 2; c.p= 1;

x= c.m2(5);

System.out.println(x + ", " + c.p + ", " + q);

}

}

(f) 5 points. Below, write an enum that has the constants AM and PM. Name the enum
anything you want.

7 of 8

Name: NetID:

5. Exception handling (10 Points)

Execute the three calls C.me(-1); C.me(0); and C.me(1); on procedure m shown below. You
know that calls on System.out.print print on the Console. As you execute the calls on me, place
the output of the calls on System.out.print in the places provided on the right below; don’t be
concerned about starting each print output on a new line.

import java.io.*;

public class C {

public static void me(int p) { CONSOLE FOR C.m(-1);

System.out.print("8. ");

int y= p / (p - 1);

try {

System.out.print("7. ");

if (p != -1) throw new RuntimeException();

System.out.print("6. ");

y= p / 0; CONSOLE FOR C.m(0);

System.out.print("5. ");

} catch (ArithmeticException e) {

System.out.print("4. ");

if (p == p) throw new RuntimeException();

System.out.print("3. ");

} catch (RuntimeException e) {

System.out.print("2: "); CONSOLE FOR C.m(1);

}

System.out.print("1: ");

}

}

8 of 8

