SOLUTION SET

CS2110 Fall 2013, Prelim 1
Thursday Oct 10, 2013 (7:30-9:00p)

The exam is closed book and closed notes. Do not begin until instructed. You have 90 minutes. Good luck!

Write your name and Cornell netid on top! There are 6 questions and an extra-credit question on 8
numbered pages, front and back. Check now that you have all the pages. You can separate the pages of
this exam if it helps, but please restaple them using the stapler at the front of the room before handing
the exam in.

We have scrap paper available, so you if you are the kind of person who does a lot of crossing out and
rewriting, you might want to write code on scrap paper first and then copy it to the exam, just so that we
can make sense of what you handed in!

Write your answers in the space provided. Ambiguous answers will be considered incorrect. You should
be able to fit your answers easily into the space we provided, so if something seems to need more space,
you might want to skip that question, then come back to your answer and see if you really have it right.

In some places, we have abbreviated or condensed code to reduce the number of pages that must be
printed for the exam. In others, code has been obfuscated to make the problem more difficult. This does
not mean that it’s good style.

We’ve included one 3-point extra credit question, so your total score can reach 103 points. However, P1
contributes no more than 100 points toward your final grade, even if you got more than 100.

1 2 3 4 5 6 XC Total
Max 20 20 20 10 10 20 3 103
Score
Grader

Academic integrity reminder: Every Cornell student is required to respect Cornell’s academic integrity
policy. The CS2110 prelim was given in two sessions. Giving students in the second prelim session any
information about the version used in the earlier session, or receiving such information from any
unauthorized source, would be a very serious violation of the policy.



1. (20 points) True or false? Circle the “T” for true. Circle the “F” for false.

T If Cat and Dog are subclasses of the same parent class Animal and variable x is declared to be
of type Animal, then x can point to a Dog or a Cat object.

T Suppose that barky is a Dog object and we set x= barky; Then Java will create a new Animal
object containing just the Animal fields from barky, and x will point to this new object.

T Now suppose that variable y is declared to be of type Cat. Suppose that the code sets x= new
Dog(“barky”); y = (Cat)x; True or false: this code won’t compile because it is illegal to cast an
Animal object into a Cat object.

T Now suppose that variable y is declared to be of type Cat. Suppose that the code sets x= new
Cat(“slinky”); y = (Cat)x; True or false: this code compiles, but doesn’t run. Instead it will
throw a runtime exception because once we turned slinky into an Animal we can’t change our
mind and turn her back into a Cat.

T If class Animal has an abstract method speak(), then x= new Dog() is legal only if Dog
overrides method speak (and of course this goes for Cat too).

T If a field in some class is declared static there will be just a single copy of that field shared by
all objects of the corresponding type.

T If a static method in a class accesses an instance field, the value will always be 0.

T Method toString() is defined for every object.

T If you execute the statement Dog[] values= new Dog[3]; then Java automatically calls the
constructor for Dog three times, to initialize values[0], values[1] and values[2].

T Suppose class Dog overrides method toString(). If you execute Animal x= new Dog(); and then
System.out.printin(x);, the version of toString() that was defined in class Animal gets called,
not the version in Dog. If you want the version in Dog you need to code it this way:
System.out.printin((Dog)x);

T Suppose Dog has a public field name, and you declare Dog x; Dog y; and then x= new
Dog(“Barky”); Then y= x; y.name= “Butch”; changes x.name to “Butch” too.

T If you define method isPrime(Integer n) and have a variable myint of type int, Java won’t
allow you to call isPrime(myint). Instead you must write isPrime(new Integer(myint))

T The type of the expression (x<y? “It”: “ge”) is String even if x and y are of type double.

T When one overload of a method calls another overload of the same method, we would say
that this is a very simple example of recursion because they have the same name.

T You can’t override methods defined by the Object class, because Object is the “superest” class
of them all.

T The value of the expression 17/3 is 6 because Java rounds to the closest integer value.

T In a binary search tree, every interior node must have exactly 2 children and every leaf node
has zero children.

T Every binary tree that supports a lookup operation is a binary search tree.

T In a balanced binary search tree containing 2*k-1 elements, a lookup will never require more
than k comparison operations.

T If a recursive method lacks a base case, Java detects this during compilation and the program

can’t be executed until you fix the error.




2. Here’s a regular expression grammar similar to one we saw in class.
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(a) (10 points) For each of the following, circle Y or N to tell us whether it is a legal expression for this

grammar.

() [Y|N](2.67+19/77.0)

(i) [Y|N|(19.2+(17.6-(14.4*(22/11)))
i) [Y[N]Q

(iv) [ Y| N]|217.6*-1+77.2

(v) |Y|N|183.19.07.122

(b) (10 points) Consider the expression 9 + 2/3. Draw a picture of the parse tree of this expression, using

the grammar given above. If there are several ways to parse it, draw several parse trees, one for each

legal way of parsing it.

The expression can be parsed in two possible ways:

EXP

¢
/\
/\




3. (20 points) Circle the letter (A/B/C) corresponding to the (single) best alternative.

(a) Suppose we are creating a GUI for directing people around a zoo. We might find it useful to create an
object List<Animal> zoo= new List<Animal>(); and then put various animal objects into the zoo, using
subclasses that extend class Animal because
A. This could let us write a display program without knowing what animals will be in the zoo.
B. Assoon as you put some actual kind of animal on the list, like Tazmanian Sloth, any other
animals would need to be instances either of that first animal, or of subclasses of it.
(b) The static keyword:
A. Tells Java that something will never change
B. Says that there is one copy of a field or method and that it is associated with the class
C. Forces Java to interpret the associated field or method as if it were defined in the parent class.
(c) Generics:
A. Can be used with primitive types (e.g. ArrayList<int>), not just object types.
B. Allow the type checking features prevent many kinds of errors by catching them as compile-
time errors.
(d) Just about anything can be put into a call to System.out.printin(...). This is because
A. Java has built-in methods to convert the base types to strings, and calls toString() on objects.
B. If Java cannot determine the type of the thing you are printing, it just prints null.
C. Java actually converts everything to an object first.
(e) If the same method name or constructor is defined more than once ...
A. ...the number and/or types of the parameters of the methods must be different.
B. ...Java will always call the method with the fewest possible number of arguments.
C. ...the method must support recursive invocations.
(f) An object of type HashSet<String> could be used to:
A. Check rapidly to see if a particular string has been seen previously
B. Alphabetize a set of strings
C. Automatically assign an integer value to each string in a set so that you can easily convert from a
string to its corresponding integer or from the integer back to the corresponding string.
(g) If Java cannot determine what the exact runtime type of an object will be in some expression:
A. It gives an error message and won’t compile that line of code.
B. It won’t complain, but the JUnit test would fail.
C. It compiles the code using the static (declared) type but uses the runtime type to decide what
methods to invoke.
(h) An assertion statement:
A. Isignored at runtime unless you told Eclipse to check assertions.
B. Can check values of variables and fields but can’t call methods or functions.
C. Can automatically iterate over a list and check each of its elements for some condition.
(i) If a class extends an abstract class:
A. It cannot add new methods or fields not already defined by the abstract class
B. It cannot implement any interfaces that the abstract class didn’t implement
C. We would call it a subclass of the abstract class.
(j) Javais said to use strong type checking because:
A. Every method can be defined many times for different types of objects.
B. Code is checked at compile time to ensure type compatibility.
C. There are more kinds of possible errors than with weak type checking.



4. (a) (5 points) Draw the binary search tree (BST) obtained by inserting these strings in the following
order: “Frank”,“Sally”,“Anne“,“Timmy*“,“Julia“,"“Lakshmi“,“Mohindra“,“Qin“,“Vladimir“. Assume that
the normal lexicographic (dictionary) comparison ordering is employed.

Frank

Anne > Sally
JuliaM \Timmy
Lakshmi ~
Mohindra Vladimir
\an

(b) (5 points) Binary search trees allow us to perform lookups very quickly, but only if the data balances
smoothly. For each name in the list we gave you in part (a), count the number of string comparisons that
would be needed to look up that name and put the name on the proper line below. Then count how
many string comparison operations it will cost to discover that the name “Joshua” is NOT in the BST.

Names

0
[}
(%]
-

Frank

Anne, Sally

Julia, Timmy

Lakshmi, Vladimir

Mohindra

Qin

OO |IN(OD|LN[D|IW[IN |-

Looking up “Joshua: | 3
(# of string comparisons needed)




5. (10 points) Write the following method (you can add helper methods if needed)

/** Given a message msg and two strings alphabet and code, return a copy of msg in which
* any characters listed in alphabet are replaced by the corresponding character
* in code. For example, charSub(“floppy”, “op”, “13”) would return “fl133y”
* Precondition: msg, alphabet, and code are non-null and alphabet.length() == code.length().
*/
public static String charSub(String msg, String alphabet, String code) {

/* There are many ways to solve this. The code below is intended to be very clear but
* we will award full credit for other clear, correct solutions too

*/

String result = “”;
for(int n = 0; n < msg.length(); n++) {
char c = msg.charAt(n);
int which = alphabet.indexOf(c);
// If the next character is in the alphabet, substitute the code, else retain the character
result += (which == -1)? c: code.charAt(which);

}

return result;



6. (20 points). Assume that class TreeNode has fields datum, left, and right (as shown below). Write
a recursive instance method descendent that returns the number of children, grandchildren, etc. of the
node for which it is called. For example, if descendants is called on a leaf node, it returns 0. If
descendants is called on the root node of some subtree, it returns 1 less than the number of nodes in
that subtree. You may define additional helper methods if needed, but make sure you write good

specifications for them.

public class TreeNode<E> {

E datum; // The value associated with this node (it has type E)
TreeNode<E> left; // The left child of this node. Null if none.
TreeNode<E> right; // The right child of this node. Null if none.

/** Return the number of descendents of this Treenode. */
public int descendants() {

/* There are many ways to solve this. The code below is intended to be very clear but
* we will award full credit for other clear, correct solutions too

*/

return nodeCount()-1; // As noted in the problem, descendants = nodeCount()-1

/** Returns the number of nodes in this subtree */
private int nodeCount() {

intnc=1;

if (left != null) nc= nc + left.nodeCount();
if (right != null) nc= nc + right.nodeCount();
return nc;



Extra credit question: For 3 points. Suppose variable List<Dog> x points to a list with some of your
favorite dog singers, and suppose you want to pass it to a method AnimalSymphony(List<Animal>
critters); If you just call AnimalSymphony(x) you will get a compile time error from Java. The problem
is that even though every Dog is an Animal, the types List<Animal> and List<Dog> aren’t the same (for
example, it would be legal to add a Cat object to something of type List<Animal>, but illegal to add a Cat
to a List<Dog>). Thus Java won’t allow you to pass a List<Dog> to a method that expects List<Animal>.

Show us a one-line way to call AnimalSymphony that would compile correctly and execute without
throwing exceptions. You may assume that AnimalSymphony uses only method speak on the animals in
the list — it doesn’t actually add new animals to the list passed to it. And you can assume that class Dog
does have a speak method.

To reiterate: we will consider only solutions that have a single line of Java code and that call the original
version of AnimalSymphony: that method cannot be changed. (But you may call “new” in your single
line, if you need to do so). And no, squeezing ten lines of code onto one line of paper is definitely not

what we mean, and you won’t get extra credit for trying to evade the rules that way!

// Construct an ArrayList of animals from the given List of Dog objects, then call AnimalSymphony

AnimalSymphony(new ArrayList<Animal>(x));



