
CS	2110.																																						Final	9:00-11:30,	Wednesday,	6	December,	Barton	Hall	Center	

The CS2110 Final is optional. As soon as possible, we
will post tentative course letter grades. You will answer
a 1-question assignment on the CMS: Do you accept the
letter grade or will you take the final? This question
will become available at the same time that we post the
tentative letter grades.

If you walk into the final room, you must complete the
final. For example, you may not decide half way
through the final that you don’t want to take it.

A few students missed one of the two prelims and are
required to take the final unless other arrangements have
been made.

Taking the final may lower or raise your course grade.
Our past experience: taking the final changes the letter
grade for very few —fewer than 10 in a course of 200,
mostly raises.

Conflicts. If there is a chance you may take the exam
and you have a conflict, please email Jenna Edwards,
jls478@cornell.edu, immediately. How we handle con-
flicts depends on how many conflicts there are. We de-
fine “conflict” as having another final at the same time
or having more than two finals within a 24-hour period,
thus following university policy.

Quiet room / extra time. If Cornell allows you extra
time or a quiet room for the exam, please email Jenna
Edwards, jls478@cornell.edu, so that we know how
many there are of you. Room: TBA.

Review: Sunday, 3 Dec, 12-2PM, Gates Auditorium

Overall length and balance of the exam. Similar to
past CS2110 exams, but it will be 150 minutes long.

JavaHyperText entry study/work habits contains useful
material. Everything that could be on P1 or P2 could be
on the final. We spell this out in more detail below.

Programming. Being able to write correct code in Java
is absolutely critical. You should have skill in using
arrays, Strings, loops (while, for, and for-each), writing
procedures, functions, constructors, etc. You will be
asked to write at least one recursive method.

JAVA. Know the basics of Java. Use the summary giv-
en for both prelims and the JavaHyperText on the
course website. You may be asked about anything in
these references, including access modifiers, abstract
classes, and interfaces. In addition, know about inner
classes, nested static classes, generics, enums, and JUnit
tests. You will not be asked questions about read-
ing/writing files. See the P1 and P2 review handouts for
more details.

Java Collection Hierarchy. Basic understanding of
how to use Collection<T>, List<T>, Set<T>, Ar-
rayList<T>, HashSet<T>, and HashMap<T>. Know the

basic methods in each, including their expected and
worst-case runtimes: how to create an object of that
class, add an element, remove an element, determine the
size (number of elements). If a question requires any
methods other than the basic ones, they will be given to
you.

Specific Java Interfaces. Be able to use interface
Comparable (what method is required?).

Know that if a Collection or one of its subinterfaces/
subclasses implements interface Iterable, the foreach
statement (e.g. for (Integer d : arraylistofinteger) {…})
can be used to iterate over such collections.

Know how to use interface Iterator<T>.

GUIs: Know the three basic things needed to be able to
listen to some event: (1) implement a particular inter-
face, which means, (2) writing the method that will be
called when the event happens, and (3) registering an
object that contains the method with the component on
which the event occurs.

We do not expect you to remember the interface and
method needed for each kind of event. It’s the overall
process, the concept, that is important.

Analysis of algorithms. Big-O complexity notation, the
definition of O(f(n)). Definition of best-case, worst-
case, and expected (average) case order of execution.
The notion that this may count execution not of every
statement but of crucial actions (e.g. number of array
comparisons, number of array-element swaps).

Proofs. Rigorous arguments for establishing the big-O
complexity of algorithms. Be prepared to show that an
algorithm is correct through clear logical reasoning.

Searching. Linear search. Binary search in an ordered
array. Be able to write these. Know their expected- and
worst-case time.

Sorting. Understand the following sorting methods,
their worst-case and expected-case execution times, and
their space complexity: insertion sort, selection sort,
merge sort, quick sort, heap sort. Be able to write each
of these, perhaps leaving parts of the algorithms in Eng-
lish (see end of this review for what we expect).

Concept of stable sorting.

The lower bound for comparison sorts is NOT ON THE
FINAL.

Abstract data types (ADTs). An ADT is just a set of
values together with (primitive, or predefined) opera-
tions on them and the idea that we may expect the prim-
itive operations to have certain properties, e.g. O(1) cost
and O(n) space. How we can define an ADT in Java by
declaring an interface. Know the meaning of amortizing
the cost of an operation.

CS	2110.																																						Final	9:00-11:30,	Wednesday,	6	December,	Barton	Hall	Center	

Knowledge of particular ADTs. Know the following
ADTs and their basic operations: stack, queue, set, pri-
ority queue, heap.

Be able to design and write: An implementation of a
stack in an array; an implementation of a queue in an
array using wraparound, so that removing the first and
putting something at the end are constant time opera-
tions; an implementation of a heap and priority queue in
an array.

Linked lists. Describe the data structure used to imple-
ment singly linked lists, doubly linked lists, and circular
lists, and each of these with a header. Know the ad-
vantages of each. Be able to write code on how to insert
or delete an element.

Hashing. The idea of a hash function and the basic idea
of hashing. Solving collisions using linear or quadratic
probing; why, when using such probing, one can’t simp-
ly remove an element by setting the array element in
which it appears to null. Load factor, and the fact that if
it is ½, at most 2 probes are expected in searching for a
value. Chaining (solving collisions using a linked list of
values that hash to the same address).

Trees. Definition of a tree and the general terminology
associated with trees —node, child, sibling, parent, leaf,
etc. Notion of a balanced tree.

Data structures to implement trees. Be able to write a
tree traversal —both breadth-first and depth-first. Be
able to write code to perform operations on trees, such
as finding the depth of tree, finding an element, etc.

Binary search trees (BSTs): Definition. Write algorithm
to search a BST for a value, know its order of execution
time.

Know about heaps and heapsort.

Grammars and Parsing are not covered on the final.

Graphs. Two major data structures for a graph: adja-
cency matrix and adjacency list. Advantages/ disad-
vantages of each (in terms of the complexity of the
primitive graph operations).

Topological sorting of a DAG. Bipartite graphs and
vertex coloring. Planar graphs.

Be able to code breadth-first and depth-first search and
understand when each is useful.

Dijkstra’s shortest path algorithm. While we will not
ask you to write it, we may ask you questions about it
—e.g. for a node w in each of the three sets of nodes,
what does d[w] contain? What is its loop invariant? The
theorem proved from the loop invariant? For a connect-
ed graph of n nodes, what is the order of execution of
the algorithm? What data structure do you use for one of
the sets to achieve it? Which representation of the graph

leads to a better execution time –adjacency matrix or
adjacency list?

Minimal spanning trees. Be able to express Prim’s
algorithm and Kruskal’s algorithm at a high level –not
an implementation —how do they pick the next edge to
add to the spanning tree?

Understand key concepts that arise when proving
the correctness of programs. Know what we mean by
specifications, preconditions, postconditions, the Hoare
triple, and invariants (class invariant, loop invariant). Be
familiar with the lectures that used these terms and be
able to answer questions about them. If the pre- and
post-conditions are given by array diagrams (as we did
for selection sort, partition algorithm, etc.), be able to
draw a diagram that generalizes the pre- and post-
condition —as a possible invariant.

Be able to develop a loop given its precondition, post-
condition, and loop invariant.	
Concurrency. Be familiar with two issues seen when
two or more threads of execution are running concur-
rently, perhaps both referring to and changing shared
variables: race conditions and deadlock.

Java implementation of threads. Know how one cre-
ates a thread and starts it running. Be able to use key-
word synchronized and the methods wait, notify, and
notifyAll within a synchronized block. Understand the
bounded-buffer problem as discussed in lecture (see the
demo on the lecture-notes page).

Be prepared to edit existing code using keyword syn-
chronized to make it thread safe.

CS	2110.																																						Final	9:00-11:30,	Wednesday,	6	December,	Barton	Hall	Center	

Sorting algorithms (written partially in English)

/** Sort b[h..k]. */
public static insertionSort(int[] b, int h, int k) {
 // invariant: b[h..i-1] is sorted
 for (int i= h; i ≤ k; i= i+1) {
 Push b[i] down its sorted position in b[h..i]
 }
}

/** Sort b[h..k]. */
public static selectionSort(int[] b, int h, int k) {
 // invariant: b[h..i-1] is sorted, b[h..i-1] ≤ b[i..k]
 for (int i= h; i ≤ k; i= i+1) {
 Swap b[i] with smallest element in b[i..k]
 }
}

/** Sort b[h..k]. */
public static mergeSort(int[] b, int h, int k) {
 if b[h..k] has less than 2 elements, return;
 int e= (h+k)/2;
 mergeSort(b, h, e);
 mergeSort(b, e+1, k);
 Merge sorted segments b[h..e] and b[e+1..k]
}

/** Sort b[h..k]. */
public static quickSort(int[] b, int h, int k) {
 if b[h..k] has less than 2 elements, return;
 Partition b[h..k] based on its first value, x, say,
 and store a value in j so that:
 b[h..j-1] ≤ b[j] = x ≤ b[j+1..k]
 quickSort(b, h, j-1);
 quickSort(b, j+1, k);
}

/** Sort b. */
public static heapSort(int[] b) {
 Make b into a heap (with largest value at the root);
 // invariant: b[0..k] is a heap, b[k+1.. is sorted, and
 // b[0..k] ≤ b[k+1..]
 for (int k= b.length – 1; k > 0; k= k-1) {
 Swap b[0] and b[k];
 Make b[0..k-1] back into a heap by
 bubbling b[0] down
 }
}

Depth-first search:
Node v is REACHABLE from node u if there is a path
(u, …, v) in which all nodes of the path are unvisited.

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {
 visit node u;
 for each edge (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Minimum spanning-tree; iterative DFS, BFS, Dijks-
tra…:

ds is a data structure that contains nodes to be processed
while (some vertex is unmarked) {
 v = best vertex in ds (remove it from ds);
 if (v is unmarked) {
 for (each w adjacent to v) {
 update w; add w to ds;
 }
}

(1) For breadth-first first algorithm:
 ds is a queue;

best element is one at front of queue
 update w: D(w)= D(v) + 1;
(2) For Dijkstra’s algorithm:
 ds is a priority queue
 best element is one with highest priority

update w: D[w] = min(D[w], D[v] + c(v,w))
(3) For Prim’s algorithm:
 ds is a priority queue
 best element is one with highest priority

update w: D[w] = min(D[w], c(v,w))

Kruskal versus Prim:

Below is Kruskal’s algorithm, written in terms of add-
ing edges to a set E, which ends up being a minimum
spanning tree.

E= {};
while (E is not a spanning tree for the graph) {
 Add to E an edge with minimum edge weight
 that does not introduce a cycle into E;
}

To change it into Prim’s algorithm, include the invariant
that the graph G1 composed of edges E and the corre-
sponding nodes is connected. Therefore, the while-loop
body must choose an edge whose addition leaves G1
connected.

