NAME: NETID

CS2110 Fall 2014 Final

There are 4 questions, some with several parts. Check now that you have all 10 pages. Write
your answers in the spaces provided. Use the back of the pages for workspace or longer
answers. Ambiguous answers will be considered incorrect. The exam is closed book and closed
notes. Do not begin until instructed.

We grade the final very carefully, knowing that you will not have a chance to look at the graded
final until you come back in January. Grades will be posted when we have them ready; this may
be several days.

You have 2.5 hours. Good luck! And have a nice winter break!

Start by writing your name and netid —legibly—at the top of each page.

True/False | Crossword Short Programming | Total
Answers
Max 20 22 30 28 100
Score

Grader

NAME: NETID

1. True-false questions (20 points)

A. T The average-case and worst-case efficiency of binary search on a sorted array are
equal.

B. F The average-case and worst-case efficiency of checking if an element is contained
in a HashSet is O(1). [false. the worst case on a set with n elements
is 0(n)]

0

F Java has three kinds of variable: the field (instance variable), the static variable, and
the local variable. [False. There is also the parameter]

D. T If method equals considers two objects equal, hashCode should return the same
value for both objects but may not. [true --if HashCode has been written
properly]

E. F InJava, hashCode() in class Object will return the same value every time you run
the program. [False, depends on implementation / platform. Memory addresses
are not repeatable]

F. F Graphs: Using an adjacency list representation, you can determine if two vertices
are connected by an edge in O(1) time. [False. Is true for adjacency matrix]

G. F When building a hash set using linear or quadratic probing, method remove(x) can
be implemented by setting the array element at the appropriate hashCode(x) to
null. [False; this messes up the probing]

H. F Calling an Object’s notify() method will notify all threads waiting on the Object’s
synchronization lock. [False, only one is notified, use NotifyAll to notify all]

I. T Superkeyword is used to invoke overridden method which overrides one of its
superclass methods. [True]

J. F The following language has an infinite number of sentences (i.e. an infinite number
of sentences can be generated from nonterminal Sentence). Note: the
nonterminals of this grammar are Sentence, S1, Noun, Verb, and Object

Sentence --> S1

Sentence --> Noun Verb Object

S1-->S51.

Noun --> dog | cat

Verb --> eats

Object --> food

[False, The rule S1 = S1 . thought infinite recursion, never generates a sentence]

NAME: NETID
2110 Crossword Puzzle. 22 points 1S
(you can miss 2 and still get full credit) T
Grade: R
Min(22, 28 — 2*(# wrong)) O|U|G B
B| [N P(R[I|M
C[H[A|I|N]|I|N]|G E
P A
D|A|V]|I[D]| |A D
E|] |R ‘AlS|S|E[R|T| |A
LIA|S|T C H| [B
B D[|I Y F|l |S
A L T C I T
S|T|A|C|K|O|[V[E[R|F|L|O|W|E[R[R[O]|R
E C I S A
C K C T C
A T
S 1 This kind of mathematical induction
E assumes P(n) for nin 0..k

Across

2 First name of an instructor
5 Author of a CS2110 graph algorithm

6 Alternative to probing to solve collisions
when hashing

7 First name of an instructor

9 Use this kind of statement to check
preconditions of a method

11 A stack has a first-in- -out behavior

13 Recursively calling the same function
forever leads to this kind of Error

DOWN

3 You’ll want to use a queue for this kind of
graph traversal

4 A 2-colorable graph is called this

8 When a group of threads are waiting to
synchronize on an object that another
group has already synchronized on,

may occur.

9 Topological sort works only if the directed
graph is

10 Make a class this so that it can't be
instantiated

12 Ends recursion and starts a proof by
induction (two words)

NAME: NETID

3. Short Answer Questions. (30 points)

3A. Topological Sort. (4 points) Below is pseudocode for topological sort. State below the
condition under which the topological ordering is unique, i.e. there exists only one topological
ordering.

/** Return a list of the nodes of graph g in topological order.
Precondition: the graph has no cycles. */

public List<Node> topologicalOrder(Set<Node> g) {
Set<Node> gl = a copy of g (so changing g1 will not change g);
LinkedList<Node> res = new LinkedList<Node>();

// Loop invariant: res contains the first res.size() nodes of a
// topological sort of g1, in sorted order
while (res.size() < g.size()) {
Let n be a node of g1 with no incoming edges;
res.add(n);
Remove all edges from g1 that connect to n;

}

return res;

}

Short Answer: The sort is unique if at the first statement of the loop
body (“Let n be a node of ..”) there is always exactly one node of gl with
no incoming edges.

3B. Exception Handling. (4 points) Execute the call mm(0) of the following method, writing the
output generated by execution to the right.

public static int mm(int x) { WRITE YOUR OUTPUT HERE
try {
System.out.printin("one"); one
int b= 5/x;
System.out.printIn("two");
return b;
} catch (RuntimeException e) {
System.out.printIn("three"); three
int c= 5/(x+1);
System.out.printIn("four"); four

}

System.out.printin("five"); Six
int d=5/x;

System.out.printin("six");

return d;

NAME: NETID

3C. Parsing. (5 points) Below is a simple context-free grammar (e denotes the empty string):
S->BS | €
B->aBB|BBRB | afp

Identify which of the following strings are sentences of this grammar (i.e. can be derived from
S) by writing YES or NO beside each one.

aa No
a No
BBa No

aBfPBafPaacaaaBBP No

aBBapP Yes

3D. Connected Graphs. (4 points) A graph is said to be biconnected if two paths that do not
share edges or intermediate vertices exist between every pair of vertices. Draw a picture of two
different biconnected graphs, each with four vertices.

Any two of (Diamond graph, square graph, tetrahedral graph)

3E. Tree Traversal. (4 points) Although you can uniquely construct a binary tree from either its
preorder and inorder traversals or its postorder and inorder traversals, more than one binary
tree can have the same preorder traversal and the same postorder traversal. Draw two
different binary trees (with unique node values) that have the same preorder and postorder
traversals.

Pre-order [1,2] and post-order [1,2] could be either

NAME: NETID

3F. Hashing with Collisions. (4 points) Consider search keys that are distinct integers. Suppose
the table size is 7, the hash function is h(key)=key % 7 and linear probing resolves collisions.
Where in the hash table do the following search keys appear after being added? 4, 6, 20, 14

0: 20
1. 21
2:
3:
4. 4
5:
6: 6

3G. Heaps. (5 points) Suppose we wanted to add another procedure merge to our class Heap.
Procedure merge would add in all the elements from the argument heap. If we have two heaps,
one with n nodes and the other with m nodes where n < m, what is the tightest bound worst-
case time complexity for merge?

It will take O(m log m) time to take the nodes out of the m-sized list.
It will take O(m log(n+m)) time to put them in the originally n-sized list

So it will take O(m log(2m)), or O(m log(m)) time

NAME: NETID

4. Programming. (28 points)
4A. Coding with Invariants (8 points)

Below is the skeleton of a program segment to “sort int array b” using selection sort. The loop
invariant is given and MUST be used. Complete the initialization, loop condition, and loop body.
You are given 2 points for providing code that ensures that each of the 4 loopy questions are
answered correctly.

Remember: b.length could be 0, meaning that the array is empty.

Remember: Look carefully at the loop invariant!

Remember: You do not need to and should not write a nested loop of Java code; instead, write
a high-level pseudocode statement that says what must be done.

// Sort int array b using selection sort
// put your Initialization here
k= b.length-1; //worth 2 pts

// invariant P: b[0..k] <= b[k+1..] AND b[k+1..] is sorted

while (k>=0){ //Couldalsodo k>0 worth 2 pts
Swap b[k] with the largest value in b[@..k] //worth 2 pts
k= k-1; //worth 2 pts

NAME: NETID

4B. Bad Bits. (6 points) The following is a flawed implementation of a set of prime natural
numbers. In this question, you will revise method add(n).

/** A set implementation that adds natural numbers ONLY if they are prime. */
class PrimeSet {

// List-backed set implementation:

private ArrayList<Integer> set = new ArrayList<Integer>();

/** Add n to the set ONLY if its a prime number and ignore otherwise.
* Precondition: n>0. */
public void add(int n) {
// Return if not prime:
for (int k=2; k < n; k++) {
if (n%k == 0) return;
}

set.add(n);

}

Below, rewrite add(int n) so that it is (1) correct and (2) thread-safe while supporting many
parallel calls to add(int n). Do not allocate any other class member fields. Do not write an
improved prime number test.

// Note: making add “synchronized” is heavy-handed and reduces
// parallelism:
public void add(int x) {

// (No synchronization req’d for prime checking)

// Return if not prime:

for (int k=2; k < x; k++) { if (x%k == @) return; }

// (Operations on “set” need to be synchronized)
// Ignore if already in “set” list:
synchronized(set) {

if (!set.contains(x)) set.add(x);

NAME: NETID

4C. Isomorphic Trees. (8 points) Class TreeNode is defined as:

public class TreeNode<T> {
public TreeNode left, right; // Left and Right nodes, or null if none
publicT value;

Write the following method body:

/** Return true iff the trees rooted at a and b have the same tree
* structure (this has nothing to do with field value). */

public boolean islsomorphic(TreeNode a, TreeNode b) {
boolean A= a == null;
boolean B= b == null;

if (A & B) return true; // both null
if (A || B)) return false; // only one is null

// both nonnull » recurse
return isIsomorphic(a.left, b.left) && isIsomorphic(a.right, b.right);

NAME: NETID

4D. Concurrent Bakery. (6 points) Consider the following code that describes a scenario where
you have one producer thread (a baker) and ten consumer threads (ten hungry customers):

class Bakery {
int nLoaves = 0; // Current number of waiting loaves
final int K = 10; // Shelf capacity

public synchronized void produce() {
if (nLoaves == K) {
this.wait(); // Wait until not full
}

++nLoaves;
this.notifyall(); // Signal: shelf not empty

}

public synchronized void consume() {
if (nLoaves == 0) {
this.wait(); // Wait until not empty
}

--nLoaves;
this.notifyall(); // Signal: shelf not full

}

Either (1) Explain why this code is thread-safe or (2) explain why it may not work and describe a
fix for it.

It is thread-safe, since only one process may be referencing this object at a time. But it may not
work. Suppose a consumer finds nLoaves == 0. It waits until it is notified that nLoaves > 0. But
ALL consumers who have been waiting will do the same thing, since all are notified. The first K
to get through will find a loaf and take it. But consumer K+1 will assume there is a loaf of bread
and do ++nLoaves, this “taking” a loaf, even if there is none there. Solve this by making the

consume if-statement into a while-statement.

10

