
1

Ur-Java

Ur-Java

• Let us introduce Java in two stages:
– Ur-Java: a class language, no objects
– Java: a language with objects

• Ur-Java is a subset of Java
– every Ur-Java program is a Java program

• Why study Ur-Java?
– Introduce the idea of encapsulation
– I also want you to have a mental model of how Java

programs are executed
• Ur-Java has a simple execution model

Two aspects of Ur-Java

• Statics: what does the program look like?
– What are the constructs in the language?

• Dynamics: what happens when you run the
program?
– What is the sequence in which program

operations are executed?
– What is the correspondence between names and

storage locations?

Statics of Ur-Java

2

Example of Ur-Java program
class Top{

public static void main(String[] args) {
Work.squares(1,10);
System.out.println(Work.powCalls);
}

}
class Work{

public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)

System.out.println(pow(i,2));
}
public static int pow(int b, int p){//p>0

powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}
}

class variable
of type int

class method of type
int x int void

class method of type
int x int int

Ur-Java program

• Collection of classes
– Example: Top and Work are two classes

• Class: like a folder that contains
– some class variables (maybe none)
– some class methods (maybe none)
– these are called class members.
– Just as in folder, class should contain logically related

members.
• Example: members in Java class Math

– Class variables named PI, E etc.
– Class methods named sin,cos,pow,….

Top Work
powCalls
squares

main

pow

Names of members

How does a method in one class refer to a member of another
class?

• Complete path name: className.memberName
– (eg) Top.main, Work.powCalls,Work.squares

• Relative path name: memberName only
– Used when referring to member in same class as method
– (eg) method Work.squares can refer to member Work.powCalls

simply as powCalls

• Analogy: long-distance call vs local call in phone system

Top Work
powCalls
squares

main

pow

Binding
• Binding: association between name and class member

– (eg) System.out.println(pow(i,2));

– pow is name for some class member. Which one is it?
• Ur-Java: static binding

– Association between name and member can be determined from
text of program without running the program

– (eg.) pow means the method defined in Work.pow
– “static” means compiler can determine binding (using types of

names if necessary)
• Contrast: dynamic binding – association between name and

member can only be determined by running program
– See later when we look at object-oriented Java

3

Binding in example program
class Top{

public static void main(String[] args) {
Work.squares(1,10);
System.out.println(Work.powCalls);
}

}
class Work{

public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)

System.out.println(pow(i,2));
}
public static int pow(int b, int p){//p>0

powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}
}

Method overloading

• Can two methods in a class have the same
name?

• Two methods in a class can have the same
name provided

– they take different numbers of arguments, or
– the type of at least one argument is different

• This is called method overloading.
• Why is this useful?

• Suppose we want to define a power method
for floats.

• Type of method for integers:
– int x int int

• Type of desired method for floats:
– float x int float

• We need another method – what should we
name it?

Method overloading
public static int pow(int b, int p){//p>0

powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}

public static float pow(float b, int p){
powCalls = powCalls + 1;
float value = 1.0;
for (int i = 0;i <p; i++)

value=value*b;
return value;

}

Methods have same name but types
of parameters are different.

Finds powers of integers

Finds powers of floats

4

Why overloading

• We could of course have called the two methods iPow
(powers of integers) and fPow (powers of floats).

• This obscures the similarity in their functionality:
overloading method name is cleaner.

• How does compiler figure out which method to call when
it sees invocation pow(….,…)?
– In this example, type of first parameter tells it which method was

intended to be invoked.
– Note: this is an example where the compiler needs to use type

information to determine binding; path name of the method is not
enough

Visibility and Encapsulation

• Class member M can be declared to be
– public: visible to methods in other classes
– private: visible only to methods in same class as M

• Encapsulation: hiding members from methods in other classes
– Variables like powCalls should usually be declared private so methods in other

classes cannot write to them directly
– Instead, introduce methods to implement functionality you want to expose
– You might want to make methods private as well if they are not needed by

methods in other classes
– Idea: control the amount of interaction between code in different classes

Top Work
powCalls
squares

main

pow

Example of Encapsulation
class Top{

public static void main(String[] args) {
Work.squares(1,10);
System.out.println(Work.numCalls());
}

}
class Work{

private static int powCalls = 0; //variables declared private

public int numCalls() { //read-only access enforced by method
return powCalls;

}

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)

System.out.println(pow(i,2));
}
………………….

}

Variables in methods

• Two kinds of variables:
– Parameters: b,p
– Local variables: value,i

• Variables not visible outside method
• Method parameters and local variables should not

be declared to be public/private
– by definition, they are visible only in that method

public static int pow(int b, int p){//p>0
powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}

5

Dynamics of Ur-Java

Memory map for modern languages

• Program area: code (like our SaM code)
– Each method is compiled to SaM-like code by compiler
– When program runs, this code is loaded into program area

• Static area: class variables
• Frame area: frames containing method parameters/local variables
• Heap: objects created by constructor invocation
• Ur-Java: no objects, so no heap

Static area Program area

Frame area Heap

Memory

Memory map
• Class variables

– Created in static area when program execution begins
– Stay in existence till program terminates

• Method parameters/local variables
– Frame containing parameters/local variables created in

frame area when method is invoked
– Frame contains other information: ignore for now
– Frame destroyed when method returns

• Note difference between these two
– Each class variable corresponds to exactly one memory

location for entire duration of program.
– Method parameters/variables can correspond to

different locations at different points in program
execution.

Example:class Work

class Work{
public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)

System.out.println(pow(i,2));
}
public static int pow(int b, int p){//p>0

powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}
}

powCalls
Work

Static area

i
hi
lo

i
value

p
b

frame
templates

squares

pow
Frame for method invocation: from bottom to top

•One slot per parameter, left to right order
•One slot per local variable

i:

i:

i:
i:
i:

i:
i:
i:

6

Example of Ur-Java program
class Top{

public static void main(String[] args) {
Work.squares(1,10);
System.out.println(Work.powCalls);
}

}
class Work{

public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)

System.out.println(pow(i,2));
}
public static int pow(int b, int p){//p>0

powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}
} Let us look at frame area after invocation squares(1,10).

class Work{
public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)

System.out.println(pow(i,2));
}
public static int pow(int b, int p){//p>0

powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}
}

Static areaJust after invocation Work.squares(1,10).

Frame area

args ……….

Frame for invocation of main

Frame for invocation of squares(1,10) lo 1

i
hi 10i:

i:

powCalls
Work

i: 0

i:

String[]

class Work{
public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)

System.out.println(pow(i,2));
}
public static int pow(int b, int p){//p>0

powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}
}

powCalls
Work

Static areaAfter invocation pow(1,2)

Frame area

1

Frame for invocation
pow(1,2)

Frame for invocation
squares(1,10)

Frame for invocation of main
args ……….

i
hi
lo 1

10

i
value
p
b 1

2
1
0

1

i:

i:
i:
i:
i:

i:
i:
i:

…..

class Work{
public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)

System.out.println(pow(i,2));
}
public static int pow(int b, int p){//p>0

powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)

value = value*b;
return value;

}
}

Static areaJust after invocation pow(1,2) returns

Frame for invocation
squares(1,10)

Frame for invocation
of main

powCalls
Work

Frame area

1

args ……….

i
hi
lo 1

10
1

i:

i:
i:
i:

…..

7

Why class variables?

• Constants needed by many methods/classes
– PI,E in class Math

• Data that must survive method invocations
– powCalls is one example
– Another example: random number generation

Random number generation

• The following formula can be used to generate a sequence
of random numbers

x0 = 19
xk = (106*xk-1 + 1283) mod 6075

class Random {//returns sequence starting at x1
private static int current = 19;
public static float rand() {

current = (106*current + 1283) % 6075;
//return float in range [0,1]
float scaled = current/6074;
return scaled;

}

Note

• Use of class variable current is essential
because value returned by an invocation of
method rand depends on values computed
by previous invocation of rand.

• Method parameters/variables are not
adequate for this purpose.

Java note

• Java Math class has a random number
generator
– Math.random() : returns a random double value

in range [0.0, 1.0)
– Example: simulating a die [1..6]

public static int die() {
return (int)(Math.floor(Math.random() * 6) + 1);

}

8

Editorial note

• Difficulty of writing and maintaining large
programs
– Related to complexity of interaction between different

portions of code
– More disciplined interactions less complex code

• Encapsulation:
– Visibility of class members is controlled
– Permits control over complexity of interactions

between classes
– Public/private are linguistic mechanisms for this
– In a language like C, this can be accomplished by

discplined programming

• Binding:
– Much of the power (and conceptual complexity) in OO-

languages comes from the subtleties of determining the
association between names and “things”.

– In older languages like FORTRAN, a name stood for
exactly one thing.

– On OO-languages, a name may mean different things at
different places in program or at different times in
program execution.

• Method overloading in Ur-Java is a simple example
of this.

• Method overriding is a more complex and powerful
example (see later in inheritance).

Additional material

Program Development

• Edit/compile/run
– When do you catch mistakes?
– Prefer to do it as early as possible in

development cycle
– To understand this, let us look at categories of

mistakes

9

Categories of mistakes

• Similar to categories in English
• Syntactic mistakes: “Spot give lecture.”

– Grammatical: “Spot gives a lecture.”

• Semantic mistakes:
– Type error: if Spot is a name only for dogs, sentence is

syntactically correct, but meaningless
• Do not need to know which dog Spot is

– Runtime error: “John gives a lecture.”
• May or may not make sense depending on who John is

– If John is 3 years old, does not make sense

PL examples

• Syntactic errors:
– (eg) 3var = 5;

//Java identifiers cannot start with digit
• Semantic errors:

– Type errors:
• (eg) a/b //if type of “a” is boolean

– Runtime errors:
• (eg) a/b //if value of b is 0

Program Debugging

• When do you catch mistakes?
– Edit time: some syntactic errors
– Compile time: type errors, missing method

definitions,..
– Run time: divide by zero errors,…

• Prefer to catch mistakes as early as possible
in development cycle

