Ur-Java

Ur-Java

* Let us introduce Java in two stages:

— Ur-Java: a class language, no objects

— Java: a language with objects
» Ur-Java is a subset of Java

— every Ur-Java program is a Java program
* Why study Ur-Java?

— Introduce the idea of encapsulation

— I also want you to have a mental model of how Java
programs are executed
« Ur-Java has a simple execution model

Two aspects of Ur-Java

« Statics: what does the program look like?
— What are the constructs in the language?
» Dynamics: what happens when you run the
program?
— What is the sequence in which program
operations are executed?
What is the correspondence between names and
storage locations?

Statics of Ur-Java

Example of Ur-Java program

class Top{
public static void main(String[] args) {
Work.squares(1,10);
System.out.println(Work.powCalls);|
3 class variable

b .
class Work{ / of type int

public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++) —
System.out.println(pow(i,2));

class method of type
int X int 2 void

b
blic static int /(int b, int p){//p>0
public static int pow(int b, int p){//p: |

powCalls = powCalls + 1; class method oftype
int value = 1; ; ; ;
for (int 1= 0 1< s £44) int X int 2 int
value = value*b;
return value;

Ur-Java program

Top Work
main powCalls
- squares
pow

* Collection of classes

— Example: Top and Work are two classes
* Class: like a folder that contains

— some class variables (maybe none)

— some class methods (maybe none)

— these are called class members.

— Just as in folder, class should contain logically related
members.
« Example: members in Java class Math
— Class variables named PI, E etc.
— Class methods named sin,cos,pow,....

Names of members

Top Work
mai powCalls
- squares
pow

How does a method in one class refer to a member of another

class?
* Complete path name: className.memberName

— (eg) Top.main, Work.powCalls,Work.squares

» Relative path name: memberName only

— Used when referring to member in same class as method

— (eg) method Work.squares can refer to member Work.powCalls

simply as powCalls

* Analogy: long-distance call vs local call in phone system

Bindin

+ Binding: association between name and class member

— (Cg) System.out.printin(pow(i,2));
— pow is name for some class member. Which one is it?

« Ur-Java: static binding

— Association between name and member can be determined from
text of program without running the program

— (eg.) pow means the method defined in Work.pow
— “static” means compiler can determine binding (using types of
names if necessary)
Contrast: dynamic binding — association between name and
member can only be determined by running program
— See later when we look at object-oriented Java

Binding in example program

Method overloading
class Top{
public static void main(String[] args) {
Work.squares(1,10);
< System.out.printin(Work powCalls); + Can two methods in a class have the same
b
A name?
class Worl .
public statie int powCalls ~ 0; * Two methods in a class can have the same
public static void squares(int lo, int hi){ name prOVided
for (int i = lo; i < hi; i++) .
System.out.println(pow(i,2)); — they take different numbers of arguments, or
i .-
public static int pow(int b, int p) {//p>0 — the type of at least one argument is different
powCalls = powCalls + 1; . .
intvahue =1 ——_ | * This is called method overloading.
for (inti=0;i<p;it++) . .
value = value*b; i Why 1S thlS useﬁll?
return value;
i
}
Method overloading

public static int pow(int b, int p){//p>0

Finds powers of integers
powCalls = powCalls + 1;

* Suppose we want to define a power method

int value = 1;

for ﬂoats' for (int i = 0; i < p; i++)

* Type of method for integers: value = value*b;
N . . return value; Methods have same name but types

—int X int = int } of parameters are different.

* Type of desired method for floats: public static float pow(float b, int p)
. powCalls = powCalls + 1;

— float x int > float float value = 1.0;

» We need another method — what should we for (int = :1 <ps #) Finds powers of floats

value=value*b;
name lt‘7 }rcrum value;

Why overloading

* We could of course have called the two methods iPow
(powers of integers) and fPow (powers of floats).

» This obscures the similarity in their functionality:
overloading method name is cleaner.

* How does compiler figure out which method to call when
it sees invocation pow(....,...)?

— In this example, type of first parameter tells it which method was
intended to be invoked.

— Note: this is an example where the compiler needs to use type
information to determine binding; path name of the method is not
enough

Visibility and Encapsulation

Top Work
main powCalls
: squares
pow

Class member M can be declared to be

public: visible to methods in other classes
private: visible only to methods in same class as M

Encapsulation: hiding members from methods in other classes

Variables like powCalls should usually be declared private so methods in other
classes cannot write to them directly
Instead, introduce methods to implement functionality you want to expose

You might want to make methods private as well if they are not needed by
methods in other classes

Idea: control the amount of interaction between code in different classes

Example of Encapsulation

class Top{
public static void main(String[] args) {
Work.squares(1,10);
System.out.println(Work.numCalls());
}

}
class Work {
private static int powCalls = 0; //variables declared private

public int numCalls() { //read-only access enforced by method
return powCalls;

!
5

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)
System.out.println(pow(i,2));

Variables in methods

public static int pow(int b, int p) {//p>0
powCalls = powCalls + 1;
int value = 1;
for (int i = 0; i < p; i++)
value = value*b;
return value;

}

Two kinds of variables:
— Parameters: b,p
— Local variables: value,i
Variables not visible outside method
Method parameters and local variables should not
be declared to be public/private
— by definition, they are visible only in that method

Dynamics of Ur-Java

Memory map for modern languages

Static area Program area
Frame area Heap
Memory

* Program area: code (like our SaM code)
— Each method is compiled to SaM-like code by compiler
— When program runs, this code is loaded into program area
+ Static area: class variables
+ Frame area: frames containing method parameters/local variables
« Heap: objects created by constructor invocation
« Ur-Java: no objects, so no heap

Memory map

 Class variables
— Created in static area when program execution begins
— Stay in existence till program terminates

e Method parameters/local variables

— Frame containing parameters/local variables created in
frame area when method is invoked

— Frame contains other information: ignore for now
— Frame destroyed when method returns
» Note difference between these two

— Each class variable corresponds to exactly one memory
location for entire duration of program.

— Method parameters/variables can correspond to
different locations at different points in program
execution.

Example:class Work

class Work{ Static area
public static int powCalls =0; ——— | = work

N e —

public static void squares(int lo, int hi){
for (inti=1lo; i <hi; i++)
System.out.println(pow(i,2));

public static int pow(int b, int p){//p>0

powCalls = powCalls + 1; frame C IR

: _ templates 1

int value = 1; hili

for (inti=0;i<p; it+) lo [it
value = value*b; squares

return value;

[Frame for method invocation: from bottom to top b
*One slot per parameter, left to right order
*One slot per local variable

Example of Ur-Java program

class Top{
public static void main(String[] args) {
Work.squares(1,10); ‘
System.out.println(Work.powCalls);
}

}
class Work {
public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)
System.out.println(pow(i,2));

}
public static int pow(int b, int p){//p>0
powCalls = powCalls + 1;
int value = 1;
for (inti=0;1<p; i++)
value = value*b;
return value;

} Let us look at frame area after invocation squares(1,10)

Just after invocation Work.squares(1,10).

class Work {
public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i < hi; i++)
System.out.println(pow(i,2));
}
public static int pow(int b, int p){//p>0
powCalls = powCalls + 1;
int value = 1;
for (inti=0; i <p;it+)
value = value*b;
return value;
}

Frame for invocation of squarcs(L1())"’/// ;

Static area

Work
powCalls [T 0]

Frame area
i i

T hild 10
lo it 1

Frame for invocation of main

After invocation pow(1,2)

class Work{
public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i =lo; i <hi; i++)
System.out.println(pow(i,2));
v
s
public static int pow(int b, int p){//p>0
powCalls = powCalls + 1;

Static area

Work

N o ——

Frame area

int value = 1; ‘
for (inti=0; 'i<p;it++)
value = value*b;

return value; Frame for invocation

Frame for invocation =~ —
squares(1,10)

Frame for invocation of main

1 pow(1,2) T

<
B
=
@

— o |— ||

Just after invocation pow(1,2) returns

class Work {
public static int powCalls = 0;

public static void squares(int lo, int hi){
for (int i = lo; i <hi; i++)
System.out.println(pow(i,2));
}
public static int pow(int b, int p) {//p>0
powCalls = powCalls + 1;
int value = 1;
for (inti=0;i<p; i++)
value = value*b;
return value;

Frame for invocation —_
squares(1,10)

Frame for invocation
of main -

Static area

Work
powCalsf | 1]

Frame area

Why class variables?

» Constants needed by many methods/classes
— PLE in class Math

 Data that must survive method invocations
— powCalls is one example

— Another example: random number generation

Random number generation

« The following formula can be used to generate a sequence
of random numbers
x, =19
x, = (106%x,, + 1283) mod 6075

class Random {//returns sequence starting at x,
private static int current = 19;
public static float rand() {
current = (106*current + 1283) % 6075;
//return float in range [0,1]
float scaled = current/6074;
return scaled;

Note

» Use of class variable current is essential
because value returned by an invocation of
method rand depends on values computed
by previous invocation of rand.

* Method parameters/variables are not
adequate for this purpose.

Java note

» Java Math class has a random number
generator

— Math.random() : returns a random double value
in range [0.0, 1.0)
— Example: simulating a die [1..6]

public static int die() {
return (int)(Math.floor(Math.random() * 6) + 1);

}

Editorial note

« Difficulty of writing and maintaining large
programs

— Related to complexity of interaction between different
portions of code

— More disciplined interactions =» less complex code
» Encapsulation:
— Visibility of class members is controlled

— Permits control over complexity of interactions
between classes

— Public/private are linguistic mechanisms for this

— In a language like C, this can be accomplished by
discplined programming

* Binding:

— Much of the power (and conceptual complexity) in OO-
languages comes from the subtleties of determining the
association between names and “things”.

— In older languages like FORTRAN, a name stood for
exactly one thing.

— On OO-languages, a name may mean different things at
different places in program or at different times in
program execution.

* Method overloading in Ur-Java is a simple example
of this.

* Method overriding is a more complex and powerful
example (see later in inheritance).

Additional material

Program Development

 Edit/compile/run
— When do you catch mistakes?
— Prefer to do it as early as possible in
development cycle

— To understand this, let us look at categories of
mistakes

Categories of mistakes

Similar to categories in English
Syntactic mistakes: “Spot give lecture.”

— Grammatical: “Spot gives a lecture.”
» Semantic mistakes:
— Type error: if Spot is a name only for dogs, sentence is

syntactically correct, but meaningless
« Do not need to know which dog Spot is

— Runtime error: “John gives a lecture.”

« May or may not make sense depending on who John is
— If John is 3 years old, does not make sense

PL examples

* Syntactic errors:
— (eg) 3var = 5;
//Java identifiers cannot start with digit

« Semantic errors:

— Type errors:

* (eg) a/b //if type of “a” is boolean
— Runtime errors:

* (eg) a/b //if value of b is 0

Program Debugging

* When do you catch mistakes?
— Edit time: some syntactic errors

— Compile time: type errors, missing method
definitions,..

— Run time: divide by zero errors,...

* Prefer to catch mistakes as early as possible
in development cycle

