\

Sorting

Binary search works great but how do we create a sorted array in
the first place?

Sorting algorithms:
e Selection sort: O(n?) time
e Merge sort: O(nlog(n)) time

e Quicksort: O(n?) time

o

/

Sorting
in Arrays

4 N

It is easy to show that selection sort requires N*(N-1)/2
comparisons, if N is the length of the array to be sorted.

This is called an O(N?) algorithm since the leading term is N2 (we
also ignore constant coefficients in big-O notation).

Question: can we find a way to speed up selection sort?

- \

\ SelectionSort /

e Input: array of Comparables
e Output: same array sorted in ascending order
e Algorithm: assume N is size of array

1. Examine all elements from 0 to (N-1), find the smallest one
and swap it with the 0* element of the input array.

2. Examine all elements from 1 to (N-1), find the smallest one
in that portion of the array and swap it with the 15
element of the array.

3. In general, at the i*" step, examine array elements from i to
(N —1), find the smallest one in that range, and exchange it
with the i*" element of the array.

N \

4 N

MergeSort
Quintessential divide-and-conquer algorithm
Divide array into two equal parts, sort each part and merge
Three questions:
e How do we divide array into two equal parts? Use indices into
array

e How do we sort the parts? Call merge-sort recursively
e How do we merge sorted arrays? Let us write some code.

o /

4 N

Any time you have a O(N?) algorithm, it pays to break the
problem into smaller subproblems, solve subproblems separately
and assemble final solution.

Rough argument: suppose you break problem into k pieces. Each
pieces takes O((N/k)?) time, so time for doing all k pieces is
roughly $O(N?) time.

If we divide problem into two subproblems that can be solved
independently, we can halve the running time!

Caveat: the partitioning and assembly process should not be

expensive.

Can we apply this divide and conquer approach to sorting?

- /

4)

Merging sorted arrays al and a2

e Create an array m whose size = size of al + size of a2

e Keep three indices: pl into al, p2 into a2, pm into m, all
initialized to O.

e Compare first elements of al and a2, and move the smaller one
(say it is from a2) into first element of m. Increment p2 and pr.

e In general, compare element al[pl] with a2[p2] and move the
smaller one into m[pm], incrementing the appropriate indices.

e If either al or a2 is emptied out, copy over all remaining
elements of the other array into m.

N \

\

QuickSort

Intuitive idea:

e Given an array A and a pivot value v
e Partition array elements into two subarrays SX and SY

SX contains only elements less than or equal to v

SY contains only elements greater than v
Sort SX and SY separately
¢ Concatenate sorted SX and sorted SY to produce result

10

-~

Asymptotic complexity of merge sort: O(n * logz(n))

Disadvantage of merge sort: need extra storage for temporary

arrays

In practice, this can be a disadvantage even though merge sort is
an asymptotically optimal algorithms for sorting.

Good sorting algorithm that does not use extra array storage:
Quicksort

-

-

Main advantage of QuickSort: sorting can be done in-place (no
extra array needs to be created).

Key problem to be solved: how do we partition array in place?
If we can do this, we can have a Quicksort method of form

void Quicksort(int[] A, int 1, int h) //sort values
between 1 and h

where 1 is lower bound of subarray to be sorted, and h is
upperbound.

_

~

12

-

[20] 31] 24] 19] 45]56 [4 [5] 5[72] 14] 99

pivot sﬁ:_o/
31

; QuickSort ; QuickSort

20 [24]31] 45]56] 65]72] 99

Z&ompm:mym\

[4 [5 [14] 19] 20]24[31[45 | 56] 65] 72] 99

11

H I

Now, neither index can advance on its own. swap
However, we can swap the read and blue balls under the

indices, and make progress again.
(n|m/n[u/n/a/a[u|n|asn
ﬁ |

(m|m/n/u/n/nefunsfsn
H ﬂ swap

(u[n[n/u/n|n|n|asa]a]a
ﬂ ﬁ
llllﬂl-llllll o

|

14

Can we get all blue balls to the left of all red balls?

Solution: keep two indices LEFT and RIGHT.
Invariant: all balls to left to LEFT index are certainly blue.

all balls to right of RIGHT index are certainly red.
Keep advancing the two indices till they cross.

(u[n[n[n[s[s[u/s/n/nlsl=
H ﬁ
(m[m[m[n[n[u[n/u/n/n/==

ﬂ ﬂ

ﬁ ﬂ

13

sentinels.

Notes on QuickSort code

Our Partition code is somewhat more inefficient than it needs to be.

Checks for array out of bounds can be done more efficiently with

16

Once indices cross over, partitioning is done.
What is analog of red/blue for quicksort?
All numbers less than pivot are blue.
All numbers greater than or equal to pivot are red.

Using this algorithm, we can partition in place!

Remaining question: what number do we choose for pivot?
Ideally, we would choose median value since that partitions
array into two pieces of equal size.

However, median is expensive to compute exactly.

Heuristic: use first array value as pivot.

some people use middle element as pivot.
others use median of first, middle and last element

15

\ Summary

e Sorting methods discussed in lecture

e Selection sort: O(N?)

e Merge sort: O(Nlog(N)) asymptotically optimal sorting
method

e Quicksort: O(N?) used in practice because it does not
require extra storage for sorting

e There are many other sorting methods in the literature.

Heap sort (see later)
e Shell sort

e Bubble sort

Radix sort

18

Sentinels
pivot

|

[, [20]31] 24] 19 45]56] 4 [65] 5] 72 14] 99] | |
/ |
/

Integer. MAX_VALUE

/

Integer.MIN_VALUE

while ((i<A.length) && (A[i]<pivot))
can be replaced with
while(A[i]<pivot)

- Padinitial array with Integer. MIN_VAL UE (-2147483648)
and Integer MAX_VALUE (2147483647)

- When advancing LEFT and RIGHT indices, Partition does not
have to check that indices "fall off" the ends of the array.

- Recursive calls to Quicksort: sentinels are automatically there!
(See picture below)

| 4[5 [14]19[20[24]31]45]56] 65] 72] 99| |

17

