
1

Grammars and Parsing

Application of recursion

• So far, we have written recursive programs on
integers.

• Let us now consider a new application,
grammars and parsing, that shows off the full
power of recursion.

• Parsing has numerous applications: compilers,
data retrieval, data mining,….

Sentence Noun Verb Noun
Noun boys
Noun girls
Noun dogs
Verb like
Verb see

Grammars

• Grammar: set of rules for generating sentences in a language.
• Our sample grammar has these rules:

– a Sentence can be a Noun followed by a Verb followed by a Noun
– a Noun can be ‘boys’ or ‘girls’ or ‘dogs’
– a Verb can be ‘like’ or ‘see’

• Examples of Sentence:
– boys see dogs
– dogs like girls
– …..

• Note: white space between words does not matter
• This is a very boring grammar because the set of Sentences is finite (exactly 18

sentences). Work this out as an exercise.

Recursive grammar

• Examples of Sentences in this language:
– boys like girls
– boys like girls and girls like dogs
– boys like girls and girls like dogs and girls like dogs
– boys like girls and girls like dogs and girls like dogs and girls like dogs
– ………

• This grammar is more interesting than the one in the last slide because
the set of Sentences is infinite.

• What makes this set infinite? Answer: recursive definition of Sentence

Sentence Sentence and Sentence
Sentence Sentence or Sentence
Sentence Noun Verb Noun
Noun boys
Noun girls
Noun dogs
Verb like
Verb see

2

Detour
• What if we want to add a period at the end of

every sentence?
• Does this work?

Sentence Sentence and Sentence .
Sentence Sentence or Sentence .
Sentence Noun Verb Noun .

Noun ……..

No! This produces sentences like
girls like boys . and boys like dogs .

Sentences with periods

• Add a new rule that adds a period only at the end of
the sentence.

• Thought exercise: how does this work?
• End of detour

TopLevelSentence Sentence .
Sentence Sentence and Sentence
Sentence Sentence or Sentence
Sentence Noun Verb Noun
Noun boys
Noun girls
Noun dogs
Verb like
Verb see

Grammar for simple expressions

• This is a grammar for simple expressions:
– An E can be an integer.
– An E can be ‘(‘ followed by an E followed by ‘+’

followed by an E followed by ‘)’

• Set of Expressions defined by this grammar is a
recursively-defined set.

Expression integer
Expression (Expression + Expression)

E integer

E (E + E)

Here are some legal expressions:

2

(3 + 34)

((4+23) + 89)

((89 + 23) + (23 + (34+12)))

Here are some illegal expressions:

(3

3 + 4

3

• Parsing: given a grammar and some text, determine if that
text is a legal sentence in the language defined by that
grammar

• For many grammars such the simple expression grammar,
we can write efficient programs to answer this question.

• Next slides: parser for our small expression language
– Caveat: code uses CS211In object for doing input from a file, so it

is not an Ur-Java program.
– However, you should understand the structure of the code to see

the parallel between the language definition (recursive set) and the
parser (recursive function)

Parsing Helper class: CS211In
• Read the on-line code for the CS211In class
• Code lets you

– open file for input:
• CS211In f = new CS211In(String-for-file-name)

– examine what the next thing in file is: f.peekAtKind()
• Integer?: such as 3, -34, 46
• Word?: such as x, r45, y78z (variable name in Java)
• Operator?: such as +, -, *, (,) , etc.

– read next thing from file:
• integer: f.getInt()
• Word: f.getWord()
• Operator: f.getOp()

• Useful methods in CS211In class:
– f.check(char c):

• Example: f.check(‘*’); //true if next thing in input is *
• Check if next thing in input is c

– If so, eat it up and return true
– Otherwise, return false

– f.check(String s):
• Example of its use: f.check(“if”);

– Return true if next thing in input is word if

Parser for expression language
static boolean expParser(String fileName) {//returns true if file has single expression

CS211In f = new CS211In(fileName);
boolean gotIt = getExp(f);
if (f.peekAtKind() == CS211In.EOF)//no junk in file after expression

return gotIt;
else //file contains some junk after expression, so return false

return false;
}
static boolean getExp(CS211In f) {//reads one expression from file

switch (f.peekAtKind()) {
case CS211In.INTEGER: //E integer

{f.getInt();
return true;

}
case CS211In.OPERATOR: //E (E+E)

return f.check(‘(‘) && getExp(f) && f.check(‘+’) &&
getExp(f) && f.check(‘)’));

default: return false;
}

}

4

Note on boolean operators
• Java supports two kinds of boolean operators:

– E1 & E2:
• Evaluate both E1 and E2 and compute their conjunction

(i.e.,“and”)
– E1 && E2:

• Evaluate E1. If E1 is false, E2 is not evaluated, and value of
expression is false. If E1 is true, E2 is evaluated, and value of
expression is the conjunction of the values of E1 and E2.

• In our parser code, we use &&
– if “f.check(‘(‘) returns false, we simply return false

without trying to read anything more from input file.
This gives a graceful way to handling errors.

– don’t worry about this detail if it seems too abstruse…

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

Tracing recursive calls to
getExp

Modifying parser to do
SaM code generation

• Let us modify the parser so that it generates SaM
code to evaluate arithmetic expressions: (eg)

2 : PUSHIMM 2
STOP

(2 + 3) : PUSHIMM 2
PUSHIMM 3
ADD
STOP

Idea
• Recursive method getExp should return a string

containing SaM code for expression it has parsed.
• Top-level method expParser should tack on a

STOP command after code it receives from
getExp.

• Method getExp generates code in a recursive way:
– For integer i, it returns string “PUSHIMM” + i + “\n”
– For (E1 + E2),

• recursive calls return code for E1 and E2
– say these are strings S1 and S2

• method returns S1 + S2 + “ADD\n”

5

CodeGen for expression
language

static String expCodeGen(String fileName) {//returns SaM code for expression in file
CS211In f = new CS211In(fileName);
String pgm = getExp(f);
return pgm + “STOP\n”; //not doing error checking to keep it simple

}
static String getExp(CS211In f) {//no error checking to keep it simple

switch (f.peekAtKind()) {
case CS211In.INTEGER: //E integer

return “PUSHIMM” + f.getInt() + “\n”;
case CS211In.OPERATOR: //E (E+E)

{ f.check(‘(‘);
String s1 = getExp(f);
f.check(‘+’);
String s2 = getExp(f);
f.check(‘)’);
return s1 + s2 + “ADD\n”;

}
default: return “ERROR\n”;

}
}

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

(3 + (34 + 23))

getExp()

Tracing recursive calls
to getExp

PUSHIMM 3

PUSHIMM 34 PUSHIMM 23

PUSHIMM 34
PUSHIMM 23
ADD

PUSHIMM 34
PUSHIMM 23
ADD
ADD

PUSHIMM 3

Exercises
• Think about recursive calls made to parse and

generate code for simple expressions
• 2
• (2 + 3)
• ((2 + 45) + (34 + -9))

• Can you derive an expression for the total number
of calls made to getExp for parsing an expression?
– Hint: think inductively

• Can you derive an expression for the maximum
number of recursive calls that are active at any
time during the parsing of an expression?

Number of recursive calls

• Claim:
of calls to getExp for expression E =

of integers in E +
of addition symbols in E.

Example: ((2 + 3) + 5)
of calls to getExp = 3 + 2 = 5

6

Conclusion
• Recursion is a very powerful technique for writing

programs.
• Common mistakes:

– Unwinding the recursion mentally (where do you
stop??)

– Incorrect or missing base cases
• Try to write “mathematical” description of the

recursive algorithm like we have been doing, and
reason about base cases etc. before writing
program.
– Why? Syntactic junk such as type declarations etc. may

create mental fog which obscures the underlying
recursive algorithm.

Extra material:
Number of recursive calls

• Claim:
of calls to getExp for expression E =

of integers in E +
of addition symbols in E.

Example: ((2 + 3) + 5)
of calls to getExp = 3 + 2 = 5

Inductive Proof
• Order expressions by their length (# of tokens)
• E1 < E2 if length(E1) < length(E2).

0 1 2 3 54

1
-27

(2 + 3)

(1 + 0)

Proof of # of recursive calls
• Base case: (length = 1) Expression must be an

integer. getExp will be called exactly once as
predicted by formula.

• Inductive case: Assume formula is true for all
expressions with n or fewer tokens.
– If there are no expressions with n+1 tokens, result is

trivially true for n+1.
– Otherwise, consider expression E of length n+1. E

cannot be an integer; therefore it must be of the form
(E1 + E2) where E1 and E2 have n or fewer tokens. By
inductive assumption, result is true for E1 and E2.
(contd. on next slide)

7

Proof(contd.)

#-of-calls-for-E =
= 1 + #-of-calls-for-E1 + #-of-calls-for-E2
= 1 + #-of-integers-in-E1 + #-of-'+'-in-E1 + #-

of-integers-in-E2 + #-of-'+'-in-E2
= #-of-integers-in-E + #-of-'+'-in-E
as required.

