
Lecture 1

Overview of CS/ENGRD 211

http://www.cs.cornell.edu/Courses/cs211/2004fa

1

Course Staff

Instructors:

• Professor Keshav Pingali
• Professor Jai Shanmugasundaram
• Professor David Schwartz

TA’s:

• Each TA will lead one or two recitation sections.
• Your TA is your main point of contact for the course: get to

know him/her well.

Consultants: in Upson 360

Office hours: TBA online

Course Administrator: Rebecca Goldwebber in Upson 4147

2

Lectures

• TR 10:10-11:00 AM, Olin 155

• Attendance is mandatory

• Lecture notes will be online. Print them before class and bring
them to class.

• Readings will be posted online together with lecture notes.

3

Sections

• SEC 01 T 1220-0110P PH 403

SEC 02 T 0125-0215P HO 110

SEC 03 T 0230-0320P HO 110

SEC 04 W 1220-0110P HO 306

SEC 05 W 0125-0215P OH 165

SEC 06 W 0230-0320P TH 202

• Sections numbers are different for CS and for Engineering
students

• Each section will be led by a member of the teaching staff

• Sections may cover material not covered in class: you must
show up

• Pick one section and attend it

• No permission needed to switch sections

4

CS 212

• 1 credit project course

• substantial project

• 1 lecture per week

• required for CS majors

• strongly advised to take 211 and 212 in same semester

5

Java Bootcamp

• CS 211 assumes basic Java knowledge: classes, objects,
methods, instance variables

• Students with little or no Java knowledge: attend Java
bootcamp

• Bootcamp will be taught by Professor Schwartz

• Time and place: Upson B7, 8/30 and 9/2, 7:30PM-10:30PM

• Same material will be covered on both days

6

Academic Excellence Workshops

• Two-hour labs in which students work together in co-operative
setting.

• One credit S/U course based on attendance.

• Fri 2:30-4:25 (no class on 8/27) Location:TBA

• See Section 9 of online syllabus

7

Coursework

• 6 assignments involving both programming and written
answers: 42% of grade

• Exercises: 3%

• Two prelims: 15% of grade each

• Final exam: 25% of grade

• These weights may change.

8

Assignments

• Assignments may be done by teams of two students.

• You can do them by yourself if you like.

• Finding a partner: choose your own or contact your TA

• Monogamy is strongly encouraged, polygamy/polyandry is
strongly discouraged, and divorces are permitted in case of
irreconcilable differences.

• See syllabus and code of academic integrity online.

9

Objectives of CS 211

Learn the following.

• Concepts in modern programming languages:

1. recursion, induction

2. classes, objects

3. inheritance, interfaces

• Efficiency of programs

• Data structures: arrays, lists, stacks, queues, trees, hash-tables,
graphs.

• Software engineering: How to organize large programs

This is not a course on Java programming.

10

Lecture Sequence

• Ur-Java: simple non-OO language

• Induction and recursion

• Overview of OO programming

• Interfaces

• Lists and Trees

• Inheritance

• Searching and sorting

• Asymptotic complexity

• Inner classes

11

• Sequence structures

• Stacks

• Queues

• Priority queues

• Search structures

• Hash tables

• Binary search trees

• Graphs and graph algorithms

12

Course is organized around concrete examples.

• Game of 8-puzzle

• Virtual machine: SaM

• others...

• Both SaM and 8-puzzle can be downloaded from course
web-site

13

...

5
3 2
1
6 7 8

5
3 4 2
1
6 7 8

4

S N

1 2 3
4 5 6
7 8

Initially scrambled
configuration

moves that will lead to the sorted configuration
Goal: given an initial configuration of tiles, find a sequence of

Sam Loyd’s 8-puzzle

Sequence of moves

Sorted configuration

A particular configuration is called a STATE of the puzzle.

 (N/S/E/W means tile moves North/South/East/West)
Transition

14

3 4 2
1
6 7 8

5
3 4 2
1
6 8

5
3 4 2
1
6 7 8

7

5 5
3 4 2

6 7 8
1

N S

W

E W

E

S N

5
3 2
1
6 7 8

4

State Transition Diagram of 8-puzzle

State Transition Diagram: picture of adjacent states

A state Y is ADJACENT to state X if Y can be reached from X in one move

15

State Transition Diagram for a 2x2 Puzzle

21
3

2
1
3

1
23

3
2
1

2
3 1

12
3 3

12

2 3
1

1
2 3

3
2
1

2
31

1 2
3

S N

S

S

N

N

E W

E

E

W

W

N S

NS

EW WE

W

E

NS

Sorted
State 3

3

3

3

3

3 3

3

3

3

3

3

S N

S

S

N

N

E W

E

E

W

W

N S

NS

EW WE

W

E

NS

12

2
1

1
2

1
2

1
2

1 2 1 2

2
1

1
2

1
2

2
1

2 1

Solutions for this state:

- WSENWSENW

........
- SWEWN

- SWN

16

Graph

• State Transition Diagram in previous slide is an example of a
GRAPH.

• Graph has

• NODES: in our example, these are the puzzle states
• EDGES: connections between pairs of nodes.
• nodes and edges may be annotated with some information.

• Other examples of graphs: airline routes, roadmaps, ...
• Path problems in graphs:

• Is there a path from node A to node B?
• What is the shortest path from A to B?
• Traveling Salesman’s problem
• Hamiltonian cycles
•see later in semester

17

Writing code for simulating 8-puzzle

1. What operations should puzzle objects support?

2. How do we represent configurations?

3. How do we specify an initial configuration?

4. What algorithm do we use to solve a given initial configuration?

5. What kind of GUI makes sense for puzzles?

18

What is SaM?

SaM is a simple StAck Machine:

(i) Modeled roughly after the Java Virtual Machine (JVM).

(ii) Use it to understand how computers work at the assembly
language level (.class file level)

(iii) Use it to understand how compilers work

(iv) You can download it from course homepage

19

Heart of SaM: a Stack and Stack Pointer (SP)

Stack: an array of integers
Stack grows when integer is "pushed" on top.
Stack shrinks when integer is "popped" from top.
Stack starts at address 0 and grows to larger addresses.

Stack pointer: first "free" address in stack
 (initialized to 0)

7

-2

40

1

2

3

SP (Stack Pointer)3

Stack

A
dd

re
ss

Note: For now, assume only integers can be pushed on stack. SaM actually

allows floats, characters, etc. to be pushed, and it tracks type of data. GUI will

display type (I:integer,F:float,...), but ignore this for now.

20

21

7

-2

40

1

2

3

3 SP

-2

40

1

2

3

SP

7

-2

40

1

2

3

3 SP

7

-2

40

1

2

3

4 SP

Integer
an
Popping

Integer
an
Pushing

16

Pushing 16 on stack

Pop: removes 7 from stack and returns it

44

2

Operations on Stack

Stack operations are used to implement SaM commands.
They are NOT SaM commands themselves.

22

SaM commands

//pops two values from top of stack
//adds them and pushes result

//pops two values (say top and below)
//and pushes result of doing (below - top)

ADD

SUB

TIMES

GREATER

AND

..........

//pushes that integer on stack
PUSHIMM *some integer*

// boolean values are simulated using 0/1 (false/true)

//logical AND

STOP //terminate execution of program

ALL arithmetic/logical operations pop values from stack
perform operation and push result.

23

7

-2

40

1

2

3

3 SP 40

1

2

3

4 SP

44

SaM Commands

PUSHIMM 16

- push the integer 16 on stack

-2

7

16

24

ADD
- pop two values from stack (7 and -2)
- add them (5)
- push result

7

-2

40

1

2

3

3 SP

5

40

1

2

3

2 SP

44

SaM Commands

SUB: similar; result would be (-2) - (7) = -9

25

GREATER

- pop two values (Vtop and Vbelow) from stack
- in example, Vtop = 7 and Vbelow = -2

- if Vbelow > Vtop push 1 else push 0

- in example, we would push 0.

7

-2

40

1

2

3

3 SP 40

1

2

3

2 SP

44

SaM Commands

Booleans are simulated in SaM with integers
 True -> 1, false -> 0

0

26

Here are two simple SaM programs:

PUSHIMM 5

PUSHIMM 4

PUSHIMM 3

PUSHIMM 2

TIMES

TIMES

TIMES

STOP //should leave 120 on top of stack

PUSHIMM 5

PUSHIMM 4

GREATER

STOP //should leave 1 on top of stack

27

SaM Simulator

1. What operations must SaM objects support?

2. How do we represent the internal state of SaM?

3. How do we load programs from a file?

4. How do we write code to interpret each of the opcodes?

5. What GUI do we use?

28

By the end of CS 211, you will be able to design and write
moderately large, well-structured programs to simulate such
systems.

29

