\

interface SearchStructure {
void insert(Object o); //stick into search structure
void delete(Object o0); //remove objects equal to o from
boolean search(Object o);

int size();

Search Structures

search structt

ire

o

See code in SSAsSortedArray.

\

(v

~

sing arrays to implement a Search Structure

e Keep items in an array, and track number of items in array.

e To locate an item 1 in the array, search the array using binary
search. If you find an item that is equal to item 1, return true;
otherwise return false. Time: O(log(n)).

To insert a new item to the structure, search the array as
above. If you find the item is already there, there is nothing to
do. Otherwise, if the search procedure says the item ought to
be in index i, shuffle all items in array from index i onwards
one slot to the right to make room for the new item, and stick
the item into index i. Time: O(n)

Deletion is similar: do a search. If item is not in array, there is
nothing to do. Otherwise, if item is in index i, shuffle all items
from index i+1 onwards one slot to the left to squeeze out the
item to be deleted. Time: O(n) \

Binary Search Trees

o

-~

Lists can also be used to implement Search Structures
Maintain entries in search structure as a sorted list.
Intuitive idea:

e search: do linear search on list

e insert: as in sorted list code

e delete: as in sorted list code

See class SSAsList.

-

Not abinary search tree Binary search tree

_ /

4 N

Let us now see how to use trees to implement a fast Search
Structure.

Binary tree: contains integers in some order
Binary search tree: special case of binary tree
At any node n in the tree,
e all integers smaller than integer at node n are stored in the left
subtree

e all integers larger than integer at node n are stored in the right
subtree

N \

\\\v

o

Algorithm for searching in binary search tree:

e If tree is empty, return false;

o If ((object at root) = (search object)) return true.
o If ((object at root) <

o If ((object at root) > (search object)) search in left subtree.

(search object)) search in right subtree

10

-~

Intuition behind binary search trees:

start with sorted list

for efficient search, we want access middle of list

“pick up” list by the scruff of its neck at some internal element
(this will be the root of the tree)

sub-lists to left and right of this element will flop down

detach these sub-lists

repeat process recursively with these sublists, hooking their
roots to previous root etc.

4 N

Algorithm for determining if a tree is a BST

empty tree or leaf node: is a bst.
internal node:
- compute smallest and largest values in left and right subtree
and also if both subtrees are bst’s themselves
- if both subtrees are bsts, and
largest object in left subtree is < object in node and
smallest object in right subtree is > object in node,
we have a bst!

12

4 N

Algorithm for returning largest value in binary search tree:

public static Object getMax(TreeCell t) {
if (t == null) return null;
if (t.getRight() == null)//t is it
return t.getDatum();
else
return getMax(t.getRight());
}

Note: node containing max value will either be a leaf or an internal node
that does not have a right child. Similarly, node containing min value
will be a leaf or an internal node without a left child.

N \

11

\ Insertion /

Algorithm to insert V into BST:

e Search for V in data structure.

e If V is not there, you’ll drop out of BST at some node N.

e Create a new TreeCell T containing V; if V is less than the
contents of node N, make T the left child of N; otherwise, make

f it the right child of N. \

14

4 N

Q (true,8,80)

3%,%9* (56) (true,60,80)
ey
@ | (@ (o

- perform a"post-order walk" of tree
- visit both subtrees to gather information about these subtrees
then visit node to process all information about tree

- easy way to remember "post-order”: think of postfix expressions
(operator written after both operands)

13

4 N

Helper function extractMax : remove largest element in tree
Algorithm:
e Traverse Right tree edges till you reach node (n) for which
Right = null

e Value stored at this node n is maximum. Delete this node, and
make left subtree of n the right subtree of parent of n.

Note:

_ /

16

\ Deletion Example /

Deleting a node N is easy if

e N is leaf (such as node 9): change reference in parent node of N
(node 8) to null

e N has only one child C (such as node 6): change reference in
parent to point to C, rather than N (node 3 will point to node
4)

e N has two children (such as node 7): a little tougher... \

\

15

See class BST for code for search/insertion/deletion in binary
search trees.

o /

18

4 N

Algorithm for deletion: delete integer i

e Walk down tree till you find node N that contains i.

e Let p be the parent node of N.

o If left subtree of N is empty, make right subtree of N into
subtree of p.

o If left subtree of N is not empty, extract maximum value from
left subtree of N and stick that into N.

This works, but a more elaborate algorithm might also look to see
if right subtree of N is empty before going to extract max from the
left subtree.

Intuition behind algorithm: think of tree as a representation of
sorted list obtained by picking up list by scruff of its neck.

- \

17

4 N

Unfortunately, our trees are not necessarily balanced!

This means search in our bst can sometimes take as long as search

in a list!
If tree is balanced, search becomes much more efficient.
Self-balancing Trees

Large body of research on how to ‘update’ trees on
insertion/deletion to guarantee that they are balanced

Options: red-black trees, AVL trees,
If you are interested, take CS 410.

_ /

20

4 N

Balanced Binary Search Tree

To get fast search, we would like search tree to be ‘bushy’ rather

@),
@Xﬂ@ oM .
RO

Balanced Tree Unbalanced Tree

than ‘skinny’.

Balanced tree: for every node,
height of left subtree = height of right subtree +/- 1

N \

19

Hash Tables

Array
of
buckets
ID: 37899 0 \vﬂﬁﬂlﬂ%
w 37045 37098 _ 37888
Hash 3
Function (X4
[N]

LK /
37655
LA ke Liss

37899 37444 _—

— X

37111 37654 37123

Hash Table with 100 Buckets

o

22

-~

Compromise between arrays and recursive data structures

Hash Tables

Problem with arrays: they do not grow dynamically

Recursive data structures:

- advantage: grow on demand as elements are inserted into data
structure

- advantage: no need to preallocate worst-case amount of storage
- disadvantage: relatively complicated code for maintaining data
structures with good performance (such as balanced binary trees)

A pragmatic compromise: hash tables

Let us design a hash table to permit fast lookup of student IDs

(int’s) in class.

-

k

21

\ Performance of Hash Tables J

Affected by many factors:

e Size of hash table relative to number of entries
Consider limit where there is only 1 bucket
=> as bad as simple linked lists!
e Quality of hash function
Good hashing functions do not lead to ‘clustering’ of entries
Bad hashing functions for IDs

1. constant functions: Hash(ID) = 7
2. Two most significant digits: Hash(379988) = 37

Good hashing functions for IDs:

1. Two least significant digits: Hash(379988) = 88
2. Sum of digits pairs mod 100: Hash(379988) = 37499+88 = 224
=>24

/Oso popular hashing function: square number and take middle digits \

24

\>_moiﬁram” /

Hash function: function that converts a student ID into a bucket
number (integer between 00 and 99 for our example)

Insertion:

1. Hash student ID to get bucket number
2. Append student ID to list at that bucket

Search:

1. Hash student ID to get bucket number
2. Look for ID by walking down list at that bucket

Deletion:

1. Hash student ID to get bucket number
/m. Walk down list at that bucket and remove ID from that list. \

23

4 N

System.out.print(i + " " + histogram[i] + " ",
if (i%10 == 0) System.out.println("");

o /

26

\Hmmd of hashing function: let us try multiplicative hashing \@3&83/

e Size of hashtable = 2" for some n (say size = 1024)

¢ Key k is in range 0..32677

e Hashing function H(k) =
(((32768*0.6125423371*k) %32768) %1024)

class m {
public static void main(String[] args) {
int[] histogram = new int[1024];
for (int i = 0; i < 32768; i++) {
int bucket = (int) (((32768%0.6125423371%1)%32768)%102
if (bucket < 1024) histogram[bucket]++;
else System.out.println("Error " + bucket);
}
//print histogram
System.out.println("Histogram:");

/ for (int i = 0; i < 1024; i++) { \

25

Q far, we have stored only integers into hash tables. In general, we égy
to store objects.

Two step process:

e Let each object have a hash code which is an integer that
corresponds to that object. Java method: hashCode().
Contract for int hashCode(); method:

e Whenever it is invoked in the same object, it must return the
same result.

e Two objects that equal must have the same hash codes.

e Two objects that are not equal should return different hash
codes, but are not required to do so.

e Examples: for Integer objects, hashCode() returns the int
contained by the object; for Float objects, it returns bit
representation of the floating point number.

e To store/retrieve an object, first extract its hash code, and then use

\

/ hash code to determine bucket number.

28

hwmﬁ.udzﬂwob of keys among buckets /

//Number of keys = 32768

//Number of buckets = 1024

//Average number of keys/bucket = 32

//For our hashing function, number of keys/bucket is in range 29+

400 T T T T T T

300

250

200

100

27

34.

4 N

Dictionaries

e In many applications, we want a more general search structure
that stores (key, value) pairs. Given a key, look up search
structure with key, and return the associated value.

e Our search structures can be viewed as a special case in which
value is always true.

e Examples:

e dictionaries: key is word, value is meaning
e telephone directory: key is name, value is telephone number
e grade sheet for CS 211: key is name, value is grade

e These more general search structures are called dictionaries.

o /

30

4 N

Hash tables are popular in practice because code is easy to write
and maintain, and performance of data structure is good.

Performance depends on two key factors:

e Load factor A: number of entries/size of array
e Hashing function: H (k)

Complexity of insertion/deletion/lookup: analysis is quite complex,
but if A < 0.75 and hashing function is chosen well, we get
essentially O(1) complexity for all these operations.

Our version of hash table is called hash table with separate lists or
chained hashing. This is used in Java Collections implementation.

Other versions of hash tables such as open-addressed hash tables

are in the literature.

- /

29

hmm mapEntry implements Comparable{ J

Comparable key;
Object value;

public mapEntry(Comparable k, Object v) {
key = k;
value = v;
b
public Comparable getKey() {
return key;
3
public Object getValue() {
return value;
3
public int compareTo(Object o) {
if (o instanceof mapEntry)
return key.compareTo(((mapEntry)o).getKey());
else //assume Object o is the key
return key.compareTo(o) ;

}

class mapAsBST extends BST{
public Object map(Object key) {
if (search(key))
return ((mapEntry) (finger.getObject())).getValue();
else
return null;

o Y,

32

4)

e Easy to implement dictionaries given our search structure

implementations:

o store (key,value) pairs in data structure

e write appropriate method for compareTo

e have a new method called map which takes key as parameter
and returns value that matches the key

31

4 N

Hashtables in Java

e Classes for hash tables: HashSet, HashMap

e Implementation uses chained hashing (array + lists as we described
it)

e You can specify an initial size for hash table. When hash table
becomes 75% full, it is automatically expanded by recursive
doubling.

e Default instance method in class Object: int hashCode(); uses
address of object as its hash code

e When you define your own class, you can override the hashCode
method to respect your class’s notion of equal.

_ /

34

4 N

class test{
public static void main(String[] args) {
mapAsBST m = new mapAsBST();

insert(new mapEntry("hello", "hola"));

insert (new mapEntry("goodbye", "adios"));

insert (new mapEntry("good morning", "buenos dias"));
insert(new mapEntry("thank you", "gracias"));

insert (new mapEntry("name", "nombre"));

5ss s s

insert (new mapEntry("girl", “"jovencita"));

System.out.println(m.map("hello"));//should print hola
System.out.println(m.map("goodbye"));//should print adios
m.delete("goodbye") ;
System.out.println(m.map("goodbye"));//should print null

33

