\

e Representations of graphs
e Graph algorithms:

— Dijkstra’s single-source, shortest paths algorithm

— Prim’s minimal spanning tree algorithm

e Graph traversals: breadth-first, depth-first, best-first

_

Graphs

VvV ={AB,CDEFGH,IJI}
E={(A,B), (B,C).(CB)......}

edge set of a graph G = (V, E).

_

We will use |V| to denote size of vertex set and |E| to denote size of

\

\ Graph: set of Nodes and Edges between nodes

3[4]2 3[4
1]7[s 61
6| 8 7
4
1
7

,8_@8 connection between
two nodes

\ Adjancency Matrix

M(i,j) isOif edge (i->j) is absent
1if edge (i->]) is present

oo
oo
OO
oo

Graph Adjacency Matrix

If edges have information, this can be stored in adjancency matrix.

1, 58 ¢3 M0 0 0 -96
62 0 0 58
27 -9.6 02700
1.0 00100
2 0
Graph Adjacency Matrix

Adjacency matrix: lots of 0'sif graph is"sparse” in the sense that
nodes typically have relatively few neighbors.

Disadvantages: wasted space
determining which nodes are adjacent to a given node
f requires wading through lotsof 0's

/

/

-~

Representations of graphs

Specification of nodes, edges and labels on nodes

e Explicit representations:
— Adjacency matrix
— Adjacency lists

e Implicit representations: (eg) 8-puzzle graph

Nodes, edges etc. are specified implicitly by giving rules for
generating graph as needed.

-

~

-

To get a feel for graphs, let us study some graph algorithms.

Suppose you have a USAir route map with inter-city distances
marked on the map.

You want to know the shortest distance from Ithaca to every city
served by USAir.

This is called a single-source (Ithaca), shortest-distance problem
with positive weights (inter-city distances).

Algorithm: Dijkstra’s algorithm

_

Adjancency List
1 3 M:

Py @ 0001
1001 S N
0100 M(i,j) isOif edge (i->j) is absent
0010 1if edge (i->j) is present
2 0
Graph Adjacency Matrix
Array of lists

A(i) stores list of nodes adjacent to nodeii

w N B O

Adjacency List
Determining if edge (i->j) existsin a graph:
O(1) operation for adjacency matrix, O(|E|) operation for adjacency list
Enumerating all nodes adjacent to nodei in graph:

O(|V|) operation for adjacency matrix,
O(1) per adjacent node for adjacency list

4 N

Intuition behind Dijkstra’s algorithm

Imagine that each node is a small weight, and that each edge is a
string of the appropriate length connecting these weights.

Initially, entire contraption is on a table.

Pick up the source node from the table and keep lifting it until all
nodes are off the table.

Height of source when a node comes off the table = shortest
distance from source to that node!

_ /

10

\ Running Example /

Shortest distances from A to:
A: empty route, length O

B: (A->B), length 2

C: (A->B,B->C) length 6

D: (A->B,B->C,C->D) length 8

At end of algorithm, each node has a minDistance value = length
of shortest path from start node to it (shown in purple in figure).

/203_ edges on shortest paths to nodes form a tree. \

9

-

A few steps of Dijkstra’s algorithm for running example

12

Analog computer for Dikstra’s algorithm

(b) Source nodeis lifted

(c) Two nodes are lifted (d) Three nodes lifted

Blue node: lifted, Red node: not lifted, but connected to a blue node by some edge
Black: all other nodes Bridge: edge between blue and red node

11

4 N

Algorithm

¢ Bridge edges are the key: one of them will become taut, and
raise the weight at the other end.

e Given a set of bridges, which one will become taut first?
Answer: The one whose red node is nearest to the source.

¢ Data structure: maintain a data structure containing all
bridges (B—R), ordered by value of (shortest distance from
source to B + length of bridge).

e At each step, get the bridge with smallest priority, and add any
new bridges that may be formed —; we need a heap.

o /

14

End of Dijkstra’s algorithm

Edges on shortest-path routes are thick.
These edges form atree.

How do we express this intuitive description as an algorithm?

What is the asymptotic complexity of this algorithm?

- \

13

4 N

More relaxed algorithm: permit heap to contain some edges
between lifted node. When we get an edge out, process edge only if
destination edge is not already lifted.

Heap h = new Heap();
h.put (new PQElement (data = (dummyroot->startNode), priority = 0))
while (h is not empty) {

get minimum priority edge (1->f)

if (f is not already lifted){ //we have a bridge

make f a lifted node and set minDistance(f) = minDistance (
for each edge (f->n)
if (n is not lifted)
make n a frontier ncde
stick edge (f->n) into PQ with priority = minDistance
}
| J

16

4 N

Pseudo-code:

Heap h = new Heap();
h.put(new PQElement(data = (dummyroot->startNode), priority = 0))
while (h is not empty) {
get minimum priority bridge (t->f)
make f a lifted node and set minDistance(f) = minDistance(t)
remove all bridges ending at f from heap <---777 how
for each edge (f->n)
if (n is not lifted)
stick edge (£->n) into PQ with priority = minDistance(f)
}

Difficulty: how do we find all bridges ending at f in heap???

N \

15

1) + length

(f) + lengt]

+ length(t-:

+ length(f

\ Picture for proof of correctness /

Discovery order:
[ABGCIDFHE]

A , B

18

Correctness of algorithm

e Induction on iterations of while loop
Intuitively, each iteration moves one new node into the lifted
set. Therefore, we do an induction on the set of nodes ordered
in the sequence in which they get put into the lifted set.

e Argument:

e Base case: start node has a trivial path of length 0 to itself

e Inductive case: assume that the shortest paths to all nodes
currently in the lifted set have been computed correctly, and
argue that the next node that gets lifted is the right one.

- /

17

contradicting the assumption that path q has strictly smaller length than path p.

Therefore, when we extract the min from the priority queue in iteration i and make a new node
lifted, we have computed its length correctly.

‘We now add all bridges whose end-point is L to maintain the second part of the invariant.

- \

20

\Hsﬁimsﬁ at the top of the while loop, /

1. each lifted node has its minimal path length computed correctly
2. PQ contains all bridges, and their priority is computed
correctly

We can argue that (i) the invariant holds before the first iteration,
and (ii) if it holds before iteration 7 begins, it holds before iteration
1+1 begins.

Sketch of proof: (see picture)

Suppose minimal priority bridge is (L — N).

Let minimal length path from A to L be path p.

We argue that path p + (L — N) is minimal path to N.

If not, there is another path ¢ from A to N that has strictly smaller length. Since path q starts at
a blue node (A) and ends at a red node (N), there must be at least one bridge edge on this path.
Let (Z — R) be the first bridge on this path.

By inductive assumption,
length(A —-— Z) + length(Z — R) >= length(A —— L) + length(L — N)

Since all edge lengths arc non-negative, this means that

ﬁ:.ﬁtﬁm —— Z) +length(Z — R)+length(R -— N) >=length(A —-— L) + length(L — Q

19

\

Concluding remarks:

There are faster but much more complicated algorithms for
single-source, shortest-path problem that run in time
O(|V|log(|V]) + |E|) but use things called Fibonacci heaps.

In practice, our algorithm will probably run better .

algorithm.

o

Requirement that all edge weights be non-negative is important;
otherwise, we need a more complicated algorithm called Warshall’s

For these and fancier data structures and algorithms, take CS 482.

/

22

-~

Complexity of algorithm:

- Every edge is examined once and inserted into PQ

when one of its two end points is first lifted

- Number of insertions and deletions into PQ = |E|

So algorithm complexity = O(|E|log(IEI))

~

- Every edge is examined again when its other end point i

+ 1

21

P

lifted

