4 N

Asymptotic Complexity: leading term analysis

Comparing searching and sorting algorithms: technique so far

1. Count worst-case number of comparisons as a function of input
size.

2. Drop lower-order terms and floors/ceilings to come up with
asymptotic running time of algorithm.

We will now see how to generalize to other programs.

1. Count worst-case number of operations executed by program as
a function of input size.
2. Use formal definition of big-O complexity to derive asymptotic

running time of algorithm.

_ /

4 N

Asymptotic running time of algorithms

4 N

A graphical view of big-O notation

c*g(n)

f(n) f(n) =0(g(n)

n0

n

To prove that f(n) = O(g(n)), find an n0 and ¢ such that
f(n) <cxg(n) for all n > n0. We will call the pair (n0,c) a witness
pair for proving that f(n) = O(g(n)).

- /

¢)

Formal definition of O() notation:

Let f(n) and g(n) be functions. We say that f(n) is of order g(n),
written O(g(n)) if there is a constant ¢ > 0 such that for all but a
finite number of positive values of n,

f(n) <cxg(n)

In other words, g(n) sooner or later overtakes f(n) as n gets large.
Example: f(n) =n+ 5,g(n) =n. We show that f(n) = O(g(n)).
Choose ¢ = 6:

f(n)=n+5<6x*n for all n > 0.

Example: f(n) = 17n,g(n) = 3n?. We show that f(n) = O(g(n)).
Choose ¢ = 6:

f(n) =17n < 6% 3n? for all n > 0.

N \

4 N

Asymptotic complexity gives an idea of how rapidly space/time

requirements grow as problem size grows.

Suppose we have a computing device that can execute 1000
operations per second. Here is the size of the problem that can be
solved in a second, a minute and an hour by algorithms of different
asymptotic complexity.

Complexity 1 second 1 minute lhour

n 1000 60,000 3,600,000
n log n 140 4893 200,000
n? 31 244 1897

3n? 18 144 1096

n? 10 39 153

a2n 9 15 21

o /

4 N

For asymptotic complexity, the base of logarithms does not matter.
Let us show that logz(n) = O(logs(n)) for any b > 1.

So we need to find a (¢, ng) such that

loga(n) < ¢ * logy(n) for all n > ny.

Choose (¢ = loga(b),no = 0).

This works because ¢ * logy(n) = logz(b) * logy(n) = logz(n) for all

positive n.

- \

4 N

Detailed counting: estimate number of SaM-like operations

¢ Basic operation: arithmetic/logical operation counts as 1
operation

e Assignment: counts as 1 operation (operation count of
righthand side expression is determined separately)

e Loop: number of operations/iteration * number of loop
iterations

e Method invocation: number of operations executed in invoked
method

_ /

4 N

For searching and sorting algorithms, you can usually determine
big-O complexity by counting comparisons.

Reason: you usually end up doing some fixed number of
arithmetic/logical operations per comparison.

4 N 4

Matrix multiplication .
p Analysis of merge-sort:
int n = A.length; <-- cost = c0, 1 time i . X X .
public static Comparable[] mergeSort(Comparable[] A, int low, int| high) {
for (int 1 = 0; i < nj; i++) { <-- cost = cl, n times . . .
if (low < high - 1) //at least three elements<-- cost = c0, 1 time
for (int j = 0; j < n; j++) { <-- cost = c2, n*n times
{int mid = (low + high)/2; <-- cost = c1, 1 time
sum = C[i][j]; <-- cost = ¢3, n*n times . .
. Comparable[] Al = mergeSort(A,low,mid); <-- cost = 77, 1 time
for k = 0; k < n; k++) <-- cost = c4, n*n*n times . . .
. . . u Comparable[] A2 = mergeSort(A,mid+1,high);<-- cost = 7?7, 1 time
sum = sum+A[i] [k]1*B[k][j]; <-- cost = c5, n*n*n times
. . return merge(A1,A2);} <-- cost = c2*n + c3 (shown before)
C[il[j] = sum; <-- cost = c6, n*n times
}
} Recurrence equation:
T(n) = (cO+cl) + 2T(n/2) + (c2%n + c3)
Total number of operations = ¢0 + c¢1*n + (¢24¢3+c6)*n*n + T(1) = ca
(c4+ch)*n*n*n
=0 How do we solve this recurrence equation?

10 12

4 N 4 Remarks h

Example: selection sort

public static void selectionSort(Comparable[] a) { //array of size n e For asymptotic running time, we do not need to count precise

number of operations executed by each statement, provided

for (int i = 0; i < a.length; i++) { <-- cost = c1, n times
int MinPos = i; <—- cost = c2, n times that number is independent of input size. Use symbolic
for (int j = i+l; j < a.length; j++) { <-- cost = ¢3, n*(n-1)/2 times constants like c1,c2, etc.
if (a[j].compareTo(a[MinPos]) < 0) <-- cost = c4, nx(n-1)/2 times
MinPos = j;} <= cost = c5, m¥(n-1)/2 times e Our estimate used a precise count for the number of times the j

Comparable temp = alil; <—= cost = c6, n times loop was executed in selection sort. We could have said it was

ali] = a[MinPos]; <-- cost = c7, n times executed n? times and still obtained the same big-O complexity.

a[MinPos] = temp;}} <77 cost = c8, n times e Once you get the hang of this, you can quickly zero in on what
Total number of operations = (c1+c2+c6+c7+c8)*n + is relevant for determining asymptotic complexity. For
(c3+c4+c5)*n*(n-1)/2 example, you can usually ignore everything that is not in the
= (cl+c2+cb6+c7+c8 -(c3+cd+c5)/2)*n + (c3+cd+c5)/2 *n*n innermost loop (why?).

2
O%) e Main difficulty: estimating running time for recursive programs

- \ - /

Remarks

e No general techniques known for solving recurrences (like
integration).

e For CS 211, just remember common patterns.

e (S 280: bag of tricks for solving recurrences that arise in
practice.

o

14

-~

Recurrence equation:
T(n) = (cO+c1) + 2T(n/2) + (c2*n + c3)
T(1) = c4

Simplify by dropping lower-order terms:

Recurrence equation:
T(n) 2T(n/2) + n
T(1) 1

It can be shown that T(n) = O(nlogz(n)).

-

13

c(1) = a
c(n) = b*n + 2c(n/2) c(n) = O(n*log(n)) Mergesort
c(l) = a
c(n) = b*n + kc(n/k) c(n) = 0(n*log(n))
c(1) = a
c(2) =b Fibonacci
c(n) = c(n-1)+c(mn-2)+ d c(@) = 0(2°n)
16
\ Cheat Sheet for closed-form expressions
Recurrence relation Closed-form Example
c(1) = a c(n) = 0(n) Linear search
c(n) =b + c(n-1)
c(1) = a
c(n) = bxn + c(n-1) c(n) = 0(n"2) Quicksort
c(1) = a
c(n) =b + c(n/2) c(n) = 0(log(n)) Binary search
c(1) = a
c(n) = b*n + c(n/2) c(n) = 0(n)
c(1) = a
//Mwbv = b + kc(n/k) c(n) = 0(n)
15

Why is this wrong?

o

/

18

bbm_%mmm of quicksort: tricky

public static void quickSort(Comparable[] A, int 1, int h) {
if (1 < h)
{int p = partition(A,1+1,h,A[1]);
//move pivot into its final resting place;
Comparable temp = A[p-1];
Alp-11 = A[1];
A[1] = temp;
//make recursive calls
quickSort(A,1l,p-1);
quickSort(A,p,h);}}

Incorrect attempt:

c(1)
c(n)

1
n + 2c(n/2)

///! partition sorting the two partitioned arrays

~

17

4 N

Programs for the same problem can vary enormously in asymptotic
efficiency.

fib(n)

f£ib(1)
fib(2)

fib(n-1) + fib(n-2)
1
1

Here is a recursive program:

static int fib(int n) {
if (n <= 2) return 1;
else return fib(n-1) + fib(n-2);

_ /

20

& N

emember: big-O is worst-case complexity.

Worst-case for quicksort: one of the partitioned array is empty, and
the other has (n-1) elements!

So actual recurrence relation is

c(1)

c(n)

o
B =
+
[
+
(g}
~
q
[
~

partition sorting the two partitioned arrays
It can be shown that c(n) = O(n?)

On the average (not worst-case), quick-sort runs in n * logz(n) time,
which is why it is usually preferred in practice.

One approach to avoiding worst-case behavior: pick pivot carefully so it
partitions array in half. Many heuristics for doing this, but none of them

can guarantee that worst-case behavior will not show up. \

\

19

\

Iterative Fibonnacci Code

fib (n) = fib(n-1) + fib(n-2) | n > 2

dad=1

granddad = 1

current = 1;

for (i=3;i<=n;i++) {
granddad = dad;
dad = current;
current = dad +granddad;

}

printf("answer is" + current);

Number of timesloop is executed is bounded by n.
Each iteration does some constant amount of work.

=> Time complexity of agorithm = O(n).

o

/

-~

fib(5)

>

fib(4) fib(3)

TN, TN

fib(3) fib2) fib(2) fib(1)

s

fib(2) fib(1)

c(n) = c(n-1) + ¢(n-2) + 2
c?=1 c=1
For this problem, problem size is n.

It can be shown that T'(n) = O(2"). Cost of computing value is
exponential in the size of the input!

-

~

\

Summary

. Asymptotic complexity: measure of space/time required by

algorithm
Searching array: linear search O(n), binary search O(log(n))

Sorting array: selection sort O(n?), merge sort O(nlog(n)),
quick sort (in-place) O(n?)

. Matrix operations: matrix-vector product O(n?),

matrix-matrix multiplication O(n?)

23

