
COM S 211/ENGRD 211 May 15, 2003
Final Exam 3:00 PM – 5:30 PM

Information:

Name (clearly print last, first, middle): ___

Net ID: _____________________

CU ID: _____________________

I have followed the rules of academic integrity on this exam (sign): __

Instructions:

Failure to follow any instruction may result in a point deduction on your exam:
• Turn off all cell phones, beepers, pagers, and any other devices that will interrupt the exam.
• Remove all calculators, reference sheets, or any other material. This test is closed book.
• Fill out the information at the top of this exam.
• Skim the entire exam before starting any of the problems.
• Read each problem completely before starting it.
• Solve each problem using Java, except where indicated.
• Use only the given code in each problem and follow specifications on whether or not to use the API.
• Write your solutions directly on the test using blue/black pen or pencil. Clearly indicate which problem you are solving.

You may write on the back of each sheet. If you need scrap paper, ask a proctor.
• Provide only one statement, expression, value, or comment per blank!
• Do not alter, add, or remove any code that surrounds the blanks and boxes.
• Do not supply multiple answers. If you do so, we will choose which one to grade.
• Follow good style! When possible, keep solutions general, avoid redundant code, use descriptive variables, use named

constants, indent substructures, avoid breaking out of loops, and maintain other tenets of programming philosophy.
• Comment each control structure, major variable, method, and class (if used), briefly.
• Do not spend too much time on any single question and budget your time based on the amount of points.
• Do not work on bonus problems until you have thoroughly proofread all required (core-point) problems!
• Figure out any problem yourself before raising your hand so that we can avoid disturbing people in cramped rooms.

Core Points:

1. ________ (10 points) __________

2. ________ (10 points) __________

3. ________ (20 points) __________

4. ________ (5 points) __________

5. ________ (20 points) __________

6. ________ (25 points) __________

7. ________ (10 points) __________

Total: ________ /(100 points) __________
Page 1

CS211 Spring 2003 Final Exam Initial or Name: Page 2
Reminders

CS211 API:

interface SearchStructure {
void insert(Object o); // stick into search structure

void delete(Object o); // remove objects equal to o from search structure
boolean search(Object o); // search for object o in structure
int size(); // number of items in structure

}

interface SeqStructure {
void put(Object o); // stick into sequence structure
Object get(); // extract from sequence structure
boolean isEmpty(); // return whether or not structure has items
int size(); // number of items in structure

}

Java API:

Comparable
int compareTo(Object o): Compares this object with the specified object for order.

HashSet
boolean add(Object o): Adds the specified element to this set if it is not already present.
void clear(): Removes all of the elements from this set.
boolean contains(Object o): Returns true if this set contains the specified element.
boolean isEmpty(): Returns true if this set contains no elements.
Iterator iterator(): Returns an iterator over the elements in this set.
boolean remove(Object o): Removes the specified element from this set if it is present.
int size(): Returns the number of elements in this set (its cardinality).

Iterator
boolean hasNext(): Returns true if the iteration has more elements.
Object next(): Returns the next element in the iteration.
void remove(): Removes from the underlying collection the last element returned by the iterator (optional operation).

Object
boolean equals(Object obj): Indicates whether some other object is “equal to” this one.

CS211 Spring 2003 Final Exam Initial or Name: Page 3
Problem 1 [10 points] General Concepts

Answer the following questions. Be concise and clear. You may use figures in your explanations.

1a [1 point] What are the three fundamental principles of object oriented programming?

1b [1 point] What is an abstract data type?

1c [1 point] Fill in the blank: A data structure is an ___________________________________ of an ADT.
Hint: The word we want begins with the letter “i”.

1d [1 point] What is a search structure?

1e [1 point] What is a sequence structure?

1f [1 point] Why does a sequence structure usually make a poor search structure? Explain your answer in terms of the
put and get operations.

1g [2 points] Explain why the worst-case asymptotic time complexity for the contains method in a binary search tree
is .

1h [2 points] Is it true that our notions of Big-Oh and asymptotic complexity are valid for all mathematical functions? You
must explain your answer for full credit. You may give examples to support your answer.

O n()

CS211 Spring 2003 Final Exam Initial or Name: Page 4
Problem 2 [10 points] Asymptotic Complexity

For Problems 2a and 2b, determine whether or not each of the following relationships is true. If the relationship is true,
provide a witness pair to justify your answer. If the relationship is false, justify your answer.

2a [4 points]

2b [6 points]

2
n 1+

O 2
n

()=

n
n

O 2
n

()=

CS211 Spring 2003 Final Exam Initial or Name: Page 5
Problem 3 [20 points] Inner Classes, Iterators, Linked Lists

Background: The remove method of an iterator will remove the last item returned by next. For example, inside a loop for
iteration, the next method might produce a “bad” value that a programmer might not want to be in the collection. If so,
calling the iterator’s remove method would remove that value.

Problem: You will complete method main in class CleanCircle to use a remove method that you will implement in
inner class CircleIterator. In class CleanCircle, the user creates a doubly-linked circular list of a user-input length
(from args[0]) with a sentinel node. Each node in the list contains a random integer, 0 to 3, inclusive. The remove
method will delete a node that contains the value 0. For example, for the list 90210, class CleanCircle would produce
and display 921. In the case of a list that contains all 0s, all non-sentinel nodes are removed and an empty string is displayed.

Specifications, Assumptions, and Hints:

• You must use the CircleIterator inner class provided in class Circle.
• Using the previous links in class Node will greatly assist your solution.

import java.util.*;
public class CleanCircle {

public static void main(String[] args) {

// Create list with sentinel as first node:
Circle c = new Circle(); // create Circle with sentinel
Node s = c.sentinel; // set reference s to sentinel node

// Add nodes to list:
Node n = s; // current node
s.next = n; n.prev = s;
for (int i = 1 ; i <= Integer.parseInt(args[0]) ; i++) {

Node tmp = new Node();
n.next = tmp; tmp.prev = n; n = tmp;

}
n.next = s; s.prev = n;

// Remove nodes with data of 0 from list, using CircleIterator’s remove():

// Display results:
System.out.println(c);

} // Method main

} // Class CleanCircle

CS211 Spring 2003 Final Exam Initial or Name: Page 6
class Node {
public Node next; // next node
public Node prev; // previous node
public Object data = new Integer(MyMath.randInt(0,3));
public String toString() { return ""+data; }

} // Class Node

class MyMath { /* code not shown */ }

class Circle {
public Node sentinel;

Circle() {
sentinel = new Node();
sentinel.next = sentinel;
sentinel.prev = sentinel;

}

public class CircleIterator implements Iterator {
private Node cursor; // current finger into list

public CircleIterator() { cursor = sentinel.next; }

public boolean hasNext() { return cursor != sentinel; }

public Object next() {
Object d = cursor.data;
cursor = cursor.next;
return d;

}

// Remove only a single node from list:
public void remove() {

}

} // Class CircleIterator

public String toString() { /* code not shown */ }

} // Class Circle

CS211 Spring 2003 Final Exam Initial or Name: Page 7
Problem 4 [5 points] Code Analysis, Software Design

Answer the following problems using Problem 3.

4a [2 points] What is the asymptotic time complexity of the main method in terms of x, where x represents
Integer.parseInt(args[0])? Briefly explain how you determined your answer.

4b [1 point] What is the asymptotic time complexity of the remove method? Briefly explain how you determined your
answer.

4c [2 points] An interesting twist we did not include is sorting of the list before removing the nodes with a 0. How could
you redesign the Circle class to make the removal process more efficient in terms of asymptotic time
complexity?

CS211 Spring 2003 Final Exam Initial or Name: Page 8
Problem 5 [20 points] Trees, Graphs

Background: Each node in a tree has a unique path. If a node may be reached via multiple paths, then the underlying data
structure is a graph but not a tree. See the figure below for example of both cases.

Problem: Write a method isTree that returns true if a suspected tree is indeed a tree. Otherwise, isTree returns false
as in the case of a graph.

Specifications, Assumptions, and Hints:

• Refer to class TestTree for an example of how the classes and methods are used. Note that method main relies on a
specific implementation of isTree.

• You must use classes BinaryNode and BinaryTree.
• You may write helper methods inside class BinaryTree, but you may not use any fields other than root.
• You might find the API’s HashSet class, which is described on Page 2, very useful.

import java.util.*;

public class TestTree {
public static void main(String[] args) {

BinaryTree t = new BinaryTree();

/* build tree: code not shown */

System.out.println(t.isTree());
}

} // Class TestTree

class BinaryNode {
 public BinaryNode left;
 public BinaryNode right;
 public Object data;
 public BinaryNode(Object d) { data=d; }
} // Class BinaryNode

[Problem 4 continued on next page]

Tree Graph

CS211 Spring 2003 Final Exam Initial or Name: Page 9
class BinaryTree {

public BinaryNode root;

// Methods to check if all nodes can be reached by only one path:

} // Class BinaryTree

CS211 Spring 2003 Final Exam Initial or Name: Page 10
Problem 6 [25 points] Graphs, Graph Traversal

Background: You have been given a special kind of robot to model with Java. Our robot moves only in perpendicular
directions (north, south, east, and west) on a rectangular grid of spaces. Some spaces are open and some are blocked, but there
is always at least one path to every open space, starting from the origin (upper, left space), which is always open. Not only
must the robot stay in the grid, but the robot must stay in open spaces. The robot must visit every open space, starting at the
origin, without getting stuck in a cycle. For instance, in the following grid

the robot branches in two directions from the origin, but will indeed reach all open spaces.

Problem: You need to complete method displayBFS in class TestRobot to write code that determines a robot’s breadth-
first search (BFS) traversal of a grid. The grid is represented as a two-dimensional array of ints, where 0 indicates an open
space and anything else indicates a blocked space. Your BFS must handle any valid user-supplied grid, though we have given
one example in method main. Class TestRobot uses classes Robot and Grid, as well as various data structures that are
not shown.

Specifications, Assumptions, and Hints:

• Each instance of class Robot has a particular location in the grid. So, you need to create a new Robot object each time
you make a unique move, which is a move to a space that the robot has not already visited.

• We do not keep track of the actual path the robot takes. The output lists all the visited nodes in an arbitrary order as
determined by a search structure that stores the nodes. See the sample session for example output and variable bfs in
method displayBFS.

• Refer to Page 2 to help with the toDo and bfs data structures.

Sample Session:

The robot state is displayed as <rowcol>. For the given example, the program displays the following BFS:
[<00> <10> <01> <20> <02> <21> <12> <13> <23>]

public class TestRobot {

public static void main(String[] args) {
int[][] layout = new int[][] { {0,0,0,1}, {0,1,0,0}, {0,0,1,0} };
Grid grid = new Grid(layout);
Robot robot = new Robot(grid);
displayBFS(robot);

}

public static void displayBFS(Robot robot) {

SeqStructure toDo = new QueueAsList();// queue for processing nodes
SearchStructure bfs = new BST(); // binary search tree for storing BFS

// Initialize graph with origin as initial location of robot:
toDo.put(robot);
bfs.insert(robot);

// continued on next page

origin
open

blocked

CS211 Spring 2003 Final Exam Initial or Name: Page 11
// Process each node and save in bfs until run out of moves:
while(!toDo.isEmpty()) {

// Get current robot state, which is the current node:

Robot current = ______________________________ ;

// Explore nodes that emanate from current node.
// Generate each node by attempting to move robot in all directions.
// Check if each node is legal and unvisited; if so, save node in BFS:

String moves = "NSEW";

for (int i = 0; i < moves.length(); i++) {

Robot next = ________________________ ; // copy Robot state (node)

char m = moves.charAt(i); // choose a new direction

boolean OK = ________________________ ; // attempt to move Robot

// Was the attempt to move OK? If so, we have a node to process.
// Must then check if node has not been visited.
// If so, update toDo and bfs:

} // end for

} // end while

// Display BFS nodes:

System.out.println(bfs);

} // Method displayBFS

} // Class TestRobot

CS211 Spring 2003 Final Exam Initial or Name: Page 12
class Robot implements Comparable {

// Represent Robot state:
public Grid grid; // grid in which robot moves
public int row,col; // current coordinate in grid; starts at origin

// Create a new Robot which moves in grid:
public Robot(Grid g) { grid = g; }

// Attempt to move robot to open location in the direction m (N, S, E, or W).
// Return false if location is blocked or attempting to move outside grid;
// otherwise update the Robot state (row, col) and return true:

public boolean move(char m) { /* code not shown */ }

// Copy (clone) the current robot for use in generating new states:
public Robot duplicate() {

Robot r = new Robot(grid);
r.row=row; r.col=col;
return r;

}

// Stringify current robot state as current position in grid:
public String toString() { return "<"+row+""+col+">"; }

// Return true if two Robots have the same state; otherwise, return false:
public boolean equals(Object o) { /* code not shown */ }

// Provide way to compare to Robot states by checking if they are equal:
public int compareTo(Object o) { /* code not shown */ }

} // Class Robot

class Grid {
public int MINROW, MINCOL;
public int MAXROW, MAXCOL;
public int[][] grid;
public Grid(int[][] grid) {

this.grid=grid;
MINROW = MINCOL = 0;
MAXROW = grid.length-1;
MAXCOL = grid[0].length-1;

}
} // Class Grid

CS211 Spring 2003 Final Exam Initial or Name: Page 13
Problem 7 [10 points] Graphs

Recall that a spanning tree is a subset of a graph that is composed of edges such that each node is visited without forming a
cycle. For this problem, you will use the following undirected weighted graph to generate different kinds of spanning trees:

7a [2 points] Should someone use an adjacency list or adjacency matrix to represent this graph? Justify your choice.

7b [2 points] Draw a breadth-first spanning tree rooted at A.

7c [2 points] Draw a depth-first spanning tree rooted at A.

7d [2 points] Draw a minimal spanning tree rooted at A.

7e [2 points] Draw a SSSP (single-source-shortest-path) tree rooted at A.

1

12

4 4
2 5

6

A

B C

D E

	COM S 211/ENGRD 211 May 15, 2003
	Final Exam 3:00 PM - 5:30 PM

	Reminders
	CS211 API:
	Java API:

	Problem 1 [10 points] General Concepts
	1a [1 point] What are the three fundamental principles of object oriented programming?
	1b [1 point] What is an abstract data type?
	1c [1 point] Fill in the blank: A data structure is an ___________________________________ of an ADT. Hint: The word we want begins with the letter “i”.
	1d [1 point] What is a search structure?
	1e [1 point] What is a sequence structure?
	1f [1 point] Why does a sequence structure usually make a poor search structure? Explain your answer in terms of the put and get operations.
	1g [2 points] Explain why the worst-case asymptotic time complexity for the contains method in a binary search tree is .
	1h [2 points] Is it true that our notions of Big-Oh and asymptotic complexity are valid for all mathematical functions? You must explain your answer for full credit. You may give examples to support your answer.

	Problem 2 [10 points] Asymptotic Complexity
	2a [4 points]
	2b [6 points]

	Problem 3 [20 points] Inner Classes, Iterators, Linked Lists
	Problem 4 [5 points] Code Analysis, Software Design
	4a [2 points] What is the asymptotic time complexity of the main method in terms of x, where x represents Integer.parseInt(args[0])? Briefly explain how you determined your answer.
	4b [1 point] What is the asymptotic time complexity of the remove method? Briefly explain how you determined your answer.
	4c [2 points] An interesting twist we did not include is sorting of the list before removing the nodes with a 0. How could you redesign the Circle class to make the removal process more efficient in terms of asymptotic time complexity?

	Problem 5 [20 points] Trees, Graphs
	Problem 6 [25 points] Graphs, Graph Traversal
	Problem 7 [10 points] Graphs
	7a [2 points] Should someone use an adjacency list or adjacency matrix to represent this graph? Justify your choice.
	7b [2 points] Draw a breadth-first spanning tree rooted at A.
	7c [2 points] Draw a depth-first spanning tree rooted at A.
	7d [2 points] Draw a minimal spanning tree rooted at A.
	7e [2 points] Draw a SSSP (single-source-shortest-path) tree rooted at A.

