CS 211 Computers and Programming
Fall 1999

Final Exam December 16th, 1999

NAME:

CU ID:

Recitation instructor/time

You have two and a half hours to do this exam.

All programs in this exam must be written in Java.

3k 3k 3k 3k ok >k %k %k 5k 5k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k >k >k >k %k 5k 5k 5k 3k 5k 5k 3k >k %k %k %k 5k 3k 5k 3k 3k >k 5k >k %k %k %k %k %k %k >k %k > *k *k k%

Problem Score
1 8
2 6
3 12
4 10
5 20
6 10
7 14
8 12
9 8

Total 100

1. (Recursion)[8 points]

The following rules define postfix expressions (pfe):

pfe -> integer

pfe -> (pfe pfe +)
pfe -> (pfe pfe -)
pfe -> (pfe pfe *)

Therefore, a pfe can be an integer, or a fully parenthesized expression
in which the operator follows the operands.

The static recursive method evalPFE below reads in a pfe from a file,
and returns the value of that pfe. This method assumes that the pfe is
legal. Remember that the class CS211In defines the following instance
methods: int getInt(); and char getOp().

Complete the implementation of the method in the two places indi-
cated by (a) and (b) in the code.

public class PFEevaluator {
private static CS211In pfe;

public static int evalPFE() {
int result = 0;
switch (pfe.peekAtKind()) {
case pfe.INTEGER: // (a) Fill in with your code

case pfe.0OPERATOR: // (b) Fill in with your code

3

return result;

}

public static void main(String[] args) {
if (args.length == 1)
pfe = new CS211In(args[0]); // Open the file

else {
System.out.println("Usage: PFEevaluator <filename>");
return;

X

System.out.println(evalPFE()); // evaluate the pfe

Answer:

public class PFEevaluator {
private static CS211In pfe;

public static int evalPFE() {
int result = O0;
switch (pfe.peekAtKind()) {
case pfe.INTEGER: // (a) Fill in with your code
result = pfe.getInt();

break;
case pfe.0PERATOR:// (b) Fill in with your code
pfe.get0p(); /770
int operandl = evalPFE(); // PFE
int operand2 = evalPFE(); // PFE
char operator = pfe.getOp(); // operator
pfe.getOp(); /7 7)?
switch (operator) {
case ’+’: result = operandl + operand2; break;
case ’-’: result = operandl - operand2; break;
case ’x’: result = operandl * operand2; break;
X
}
return result;
}
public static void main(String[] args) {
if (args.length = = 1)
pfe = new CS211In(args[0]); // Open the file
else {
System.out.println("Usage: PFEevaluator <filename>");
return;
3
System.out.println(evalPFE()); // evaluate the pfe
}
}
Correct base case 2
Correct recursive case 2
Correct parsing of pfe 2
Calculate the pfe value correctly 2

2. (Java basics) [6 points]

Java Nagila, our novice programmer, has just been learning about fractions.
Each fraction is written as a ratio of two integers: a numerator and a non-
zero denominator. For example, 1/2 is a fraction, there 1 is the numerator
and 2 is the denominator. This fraction can also be represented by the real
number 0.5.

Ms. Nagila has written some code which is shown below.

Answer the questions from (a) to (f) in the space provided in the code.

1 point for each correct answer

1. public interface IRealNum { double getReal(); }
2.
3. public class Real implements IRealNum {
4. protected double rVal;
5.
6. public Real(double r) { rVal = r; }
7. public double getReal() { return rVal; }
8. // (a) Write the equals() method which returns true if the
9. // values in the two Reals being compared are equal.
10. public boolean equals(Object obj) {
Answer:
if (!'(obj instanceof Real)) return false;
return rVal == ((Real) obj).rVal;
11. }
12. }
13.

14. final public class Fraction extends Real {
15. // The corresponding real value is stored in the super class=20

16. private int numerator;

17. private int denominator;

18.

19. public Fraction(int n, int d) {

20. super ((double)n/d) ;

21. numerator = n;

22. denominator = d;

23. }

24.

25. int getNumerator() { return numerator; }
26. int getDenominator() { return denominator; }

27.
28.
29.
30. }

public static Fraction makeCopyOfFraction(Fraction q)
return new Fraction(q.numerator, q.denominator);

3

31. public class Clientl {

32.
33.
34.
35.
36.
37.
38.
39.
40.

Answer:

41.
42.

Answer:

43.
44 .

Answer:

45.
46.

Answer:

47.
48.

Answer:

49.
50. }

public static void main(String args[]){

IRealNum numl = new Real(0.75);
IRealNum num2 = new Real(0.75);
IRealNum num3 = new Fraction(3,4);

//(b) State what you expect to be printed here:
System.out.println(numl == num?2);

false

//(c) State what you expect to be printed here:
System.out.println(numl.equals(num?2));

true

//(d) State what you expect to be printed here:
System.out.println(numl.equals("0.75"));

false

//(e) State what you expect to be printed here:
System.out.println(numl == num3);

false

// (f) State what you expect to be printed here:
System.out.println(numl.equals(num3));

true

{

3. (Subtyping) [12 points]

Java Nagila has written a class called Client2 that uses the IRealNum inter-
face and the two classes Real and Fraction she defined earlier. Nagila expects
the following result from Client2 when it is run:

Fraction 1/2 has real value 0.5
The copy also has the real value 0.5

Unfortunately, her code contains errors. Identify all errors in her code, using

the following style.

Line 1: Missing keyword “new” in front of the constructor call.

Your itemized list of errors and fixes should be written in the space provided

at the end of this problem.

// See the code for IRealNum and Real and Fraction classes

// defined earlier.
public class Client2 {

public static void

main(String args[]){

1. Fraction frac = Fraction(4,5);

2. IRealNum numA = new Fraction(1,2);

3. Fraction numB = numA;

4. Real numD = (Fraction) numA;

5.

6. IRealNum numE = new Fraction(1,2);

7. nunE.getReal();

8. ((Real) numE).getReal();

9. ((Real) numE).getNumerator();

10. int n = numE.getNumerator();

11. int d = numE.getDenominator();

12. double r = numE.rVal;

13. System.out.println("Fraction " + n + "/" + 4 + " has real value
r);

14.

15. Fraction numF = Fraction.makeCopyOfFraction(numE);

16. System.out.println("The copy also has the real value " +=

numF.getReal()) ;
}
}

"=

Answer:

// See the code for IRealNum and Real and Fraction classes
// defined earlier.

public class Client2 {

public static void main(String args[]){

Fraction frac = new Fraction(4,5);
IRealNum numA = new Fraction(1,2);
Fraction numB = (Fraction) numA;
Real numD (Fraction) numA;

IRealNum numE = new Fraction(1,2);

numE.getReal() ;

((Real) numE).getReal();

((Fraction) numE).getNumerator();

int n = ((Fraction)numE) .getNumerator () ;

int d = ((Fraction)numE) .getDenominator();

double r = ((Real)numE).rVal;//or cast to Fraction
System.out.println("Fraction " + n + "/" + d + " has real value " + r);

Fraction numF = Fraction.makeCopyOfFraction((Fraction)numE) ;
System.out.println("The copy also has the real value " +=
numF.getReal()) ;
}
}

2 points for each statement identified.

Line 3. Down casting requires an explicit cast to Fraction.

Line 9. Down casting to wrong type Real. Change Real to Fraction

Line 10. Requires an explicit cast to Fraction.

Line 11. Requires an explicit cast to Fraction.

Line 12. Requires an explicit cast to Real or Fraction.

Line 15. Incompatible parameter type. Parameter requires an explicit cast
to Fraction.

Deduct 1 point for each correct statement identified as wrong.

4. (Asymptotic complexity)[10 points]

(a) Order the following running times from fastest to slowest:
O(n®?1), O(log(n)), O(1), O(2").
You do not have to give any explanation.

(b) A result called Stirling’s formula tells us that n! > (n/e)”. Use this
result to argue that 2" = O(n!). You will not get any credit unless you
provide a witness pair (c,ng) to support your answer.

(c) Java de Hutt has written the following program outline in which |A|
represents the number of items in an array.

method Gargle (array A) {

if |Al > 1 {
//some preprocessing work
Compute for O0(|A|log(lAl|)) time;
//Split is constant time operation
Split A into two equal size pieces called B and C;
Gargle(B);
Gargle(C);
Update A using O([A|) time;

}
else Update A using some constant time operation;

}

Write down a recurrence equation that describes the time taken by de
Hutt’s program.

Answer:
(a) (4 points) O(1),O(log(n)), O(n®'),0(2").
Give 1 point for every function in the right place in this sequence.

(b) (4 points) Since n! > (n/e)", it is sufficient to find a witness pair (¢, ng)
such that

2" < cx(n/e)™ for n > ng

It is easy to see that (1,6) serves as a witness pair because

2" < (n/e)™ means n > 2 x e = 5.5... which is consistent with n > 6.
There are other witness pairs of course, so check the answer carefully.

(¢) (2 points) T(n) = n*log(n) + 2*T(n/2)
T(1) = 0(1)

Also accepted: T(n) = n*log(n) + 2*T(n/2) + n

10

5. (Sorting and Binary Search Trees)[20 points]

Gill Bates, emperor of the Dork Side (DOS), wants you to implement a prior-
ity queue class using a Binary Search Tree (BST) according to the following
specifications:

e It implements the SequenceStructure interface:

interface SeqStructure {
void put(Object o); //stick into sequence structure
Object get(); //extract from sequence structure
boolean isEmpty();
int size();}

e The objects in the data structure must be maintained as a binary search
tree. The TreeCell class discussed in lecture is given at the end of this
exam for your use.

e The put method takes an object of type Comparable and inserts it into
the right place in the BST. Note that the object is stuck into the data
structure regardless of whether or not there is another object equal to
it already present in the data structure.

e The get method should extract the largest object from the BST (an
object ol such that ol.compareTo(02) > 0 for all other object 02 in
the BST), and return it (Hint: think about the extractMax method we
discussed in lecture).

The following series of pictures shows some of the steps in building the BST
when the elements in the sequence 8,6,9,4,7,5,6 are put into the data struc-
ture, and when two get’s are done to the resulting data structure.

e

get()

®

\@\@ﬂ\@

e

11

(a)

Write a class named BatesMotel that meets this specification by filling
in the shell shown below. Make sure your get method works correctly
even if the largest value is at the root of the BST.

What is the asymptotic complexity of the put and get methods? Justify
your answer briefly.

If this priority queue implementation is used to sort n values by doing
n put’s followed by n get’s like in HeapSort, what is the asymptotic
complexity of this sorting algorithm?

Will Gill Bates be happy with this sorting method? If not, name one
sorting algorithm which has better asymptotic complexity than your
algorithm.

What is the asymptotic complexity of quicksort? Describe an input
array for which it exhibits this worst-case complexity.

12

(a) class BatesMotel implements SeqStructure {
protected TreeCell t;
protected TreeCell finger;//a cursor into the data structure
protected TreeCell previous;//previous is one step behind finger
protected int size;

public BatesMotel() {
t = null;
size = 0;

}

public String toString() {
return "Tree has " + size + " elements:" + t;

}

public boolean isEmpty() {
return (size == 0);

X

public int size() {
return size;

}

//helper method

protected boolean search(Object o){
finger = t;
previous = null;

while (finger != null) {
int test = ((Comparable)finger.getDatum()).compareTo(o);
if (test == 0) return true;
//need to explore one of the subtrees
//set up the cursors correctly
previous = finger;
if (test < 0)
//explore right subtree
finger = finger.getRight();
else
//explore left subtree
finger = finger.getleft();
}

return false;

13

public void put (Object o) {

X

public Object get(){

14

Answer:

class BatesMotel implements SeqStructure {
public void put (Object o) {
if (t == null){//empty tree
t = new TreeCell(o);
size = size + 1;
return;
}
//non-empty tree:look for object first, setting up cursors
boolean found = search(o);
if (! found) {
//put o into a child of previous
int test = ((Comparable)previous.getDatum()) .compareTo(o);
if (test < 0)
previous.setRight (new TreeCell(o));
else
previous.setLeft(new TreeCell(o));
size = size + 1;
}
else {//make duplicate new root of right subtree
//you can also make it new root of left subtree
finger.setRight (new TreeCell(o,null,finger.getRight()));
size = size + 1;

points for checking for empty tree

point for updating t correctly when tree is empty
points for handling (! found) case correctly
points for handling (found) case correctly

W NN -

public Object get(){
if (t == null) {
System.out.println("Duh: attempt to get from empty PQ");
return null;

}
//set up cursors
finger = t;

previous = null;

while (finger.getRight() != null) <
previous = finger;
finger = finger.getRight();

15

}
if (previous != null)
previous.setRight (finger.getLeft());
else
t = finger.getlLeft();
size = size - 1;
return finger.getDatum();

}

1 point for empty tree handled correctly

1 points for locating max value correctly

2 points for removing it correctly

1 point for updating size and returning the right value

2 points Both methods are O(n).
2 points Sorting will take O(n?) time.
1 point You can do better with heapsort or mergesort.

2 points Quicksort takes O(n?) time. Bad cases are sorted arrays.

16

6. (10 points) Franz Liszt wants you to write a recursive class method called
intersection which takes two lists L1 and L2 as parameters, and returns a
new list containing only the elements that occur in both lists. This new list
must not share any list cells with L1 and L2. Assume that both lists contain
objects of type Comparable sorted in decreasing order.

You do not have to clone the data objects of the Comparable type. The class
ListCell discussed in lecture in given at the end of this exam.

(a) What is the base case for your recursion? What is the output for this
case?

(b) Write the specified method.
(c) What is the asymptotic complexity of your method?

17

This page intentionally left blank.

(a) Base case: one or both lists is empty. Output: empty list.

(b) public static ListCell intersection(ListCell 11, ListCell 12){
if ((11 == null) || (12 == null)) return null;
int t = 11.getDatum() .compareTo(12.getDatum());
if (t == 0) return new ListCell(l1l.getDatum(),
intersection(l1l.getNext(),
12.getNext ()
)
);
else
if (t > 0) return intersection(ll.getNext(), 12);
else return intersection(ll, 12.getNext());

1 point: correct base case
1 point: correct output for base case
2 points: if first objects of 11 and 12 are equal,
that object is in output list
2 points: correct recursive call when first objects of 11 and 12 are equal
2 points: if first objects are not equal,
correct recursive call

(c) (2 points) The asymptotic complexity is O(|I1] + |I2]).

18

7. (14 points) A doubly-linked list (DLL) is like a linked list except that each
cell has three fields called datum, next and previous, where datum contains
reference to an object of type Object, and next and previous point to the
succeeding and preceding cells in the DLL.

c

datum 12 45 37 94 26
next

previous

C.next() : returns reference to cell containing 94
C.previous(): returns reference to cell containing 45
C.first(): returns reference to cell containing 12

C.last(): returns reference to cell containing 26

(a) Write a class for implementing a DLL by filling in the following shell.

class DLL{

protected Object datum;

protected DLL next;

protected DLL previous;

//constructor: n and p are references to DLL cells that will
//become the next and previous cells respectively for this cell
//Hint: your constructor must also modify fields of n and p to

//chain all cells up correctly.
public DLL(Object o, DLL n, DLL p){

public Object getDatum() {
}....

public DLL getNext() {
}....

public DLL getPrevious() {

X

//return reference to first cell of DLL
public DLL getFirst() {

19

}

//return reference to last cell of DLL
public DLL getLast() {

X
}

(b) Write a client class that uses your DLL class to build and print a doubly-
linked list containing the Integers (6,5,4) in that order.

20

class DLL {

protected Object datum;
protected DLL next;
protected DLL previous;

//4 points: one for each statement in constructor other than the first
public DLL(Object o, DLL n, DLL p){
datum = o;
next = n;
previous = p;
if (p != null) p.next = this;
if (n != null) n.previous = this;
X
//1 point
public Object getDatum() {
return datum;
X
//1 point
public DLL getNext(){
return next;
X
//1 point
public DLL getPrevious(){
return previous;
X
//3 points
public DLL getFirst() {
DLL finger = this;
while (finger.previous != null)
finger = finger.previous;
return finger;
X
//3 points
public DLL getLast() {
DLL finger = this;
while (finger.next != null)
finger = finger.next;
return finger;

}

}

class testDLL {
//1 point

public static void main(String[] args) {

21

DLL d = new DLL(new Integer(4), null, null);
d = new DLL(new Integer(5), d, null);

d = new DLL(new Integer(6), d, null);
System.out.println(d);

22

8. (Heaps and Binary Search Trees) (12 points)

(a) Describe briefly what it means for a tree to be a binary heap.

(b) The famous French priest Pere Tree wants you to write a class method
that takes a TreeCell as a parameter, and returns true if that TreeCell is
the root node of a heap, and false otherwise. Write this method for him.
The class TreeCell discussed in lecture is given at the end of the exam.
You may assume that the heap contains objects of type Comparable.

(c) Pere Tree tells you that a binary tree is a binary search tree (BST) if
the object stored at each node N in the tree is (i) greater than or equal
to the object stored in the left child of N (if a left child exists), and (ii)
less than or equal to the object stored in its right child of N (if a right
child exists). Is he right? If not, give a counter-example to Pere Tree’s
claim.

Answer:

(i) (1 point) A tree is a binary heap if every node has at most two children,
and the value contained in a node is greater than or equal to the values
contained in its children.
(i)
//This method tests if a TreeCell t is the root of a heap
public static boolean isHeap(TreeCell t) {
//1 point for empty tree
if (t == null) return true;
//2 points for checking left and right subtrees for Heap property
boolean 0K = isHeap(t.getLeft()) && isHeap(t.getRight());
Comparable datum = (Comparable) (t.getDatum());
//2 points for checking left child and right child vs root
//2 points for making sure that left or right child is not null
if (t.getLeft() != null)
0K = (datum.compareTo(t.getLeft().getDatum()) >= 0) && O0K;
if (t.getRight() != null)
OK = (datum.compareTo(t.getRight().getDatum()) >= 0) && OK;
return 0K;

}

(iii) (4 points) Pére Tree is wrong. The following tree satisfies his criterion
but it is not a BST.

7

/
3

/' \

23

9. (8 points) Hashley Wilkes has a hash-table of size 10 which uses the hash
function H(X) = X mod 10. Scarlett O’Java, whose role in life is to test
Hashley, gives him input values in the following order:

4371,1323,6173,4199, 4344, 9679, 1989.

(a) Draw a picture of Hashley Wilkes’s hash-table after these values have
been inserted into his hash-table. You may assume any order you wish
for the values in a single bucket.

(b) In the context of hash-tables, what is meant by a “collision”?

(¢) For what values in Scarlett’s input are there collisions?
Answer:
(a) (4 points total)

oints for spine
oints per value stored correctly

\ \ \Y \Y
4371 1323 4344 4199
6173 9679
1989

(b) (1 point) A collision occurs when the hash function maps two or more
objects in the input to the same bucket.

(c) (3 points) The values (1323,6173), and (4199,9679,1989) have collisions.

24

Appendix

These classes were discussed in lecture and are provided for your use
during the exam.

class ListCell {

protected Object datum;
protected ListCell next;

public ListCell(Object o, ListCell n){
datum = o;
next = n;

¥

//this is sometimes called the '"car" method
public Object getDatum() {
return datum;

}

//this is sometimes called the "cdr" method
public ListCell getNext(){
return next;

X

//this is sometimes called the "rplaca" method
public void setDatum(Object o) {
datum = o;

}

//this is sometimes called the "rplacd" method
public void setNext(ListCell 1){
next = 1;

}

public String toString(){

String rString = datum.toString();

if (next == null) return rString;

else return rString + " " + next.toString();
}
}

25

class TreeCell {
protected Object datum;
protected TreeCell left;
protected TreeCell right;

public TreeCell(Object i) {
datum = i; //left and right are null by default
}

public TreeCell (Object i, TreeCell 1, TreeCell r) {
datum = i;
left = 1;
right = r;

}

public void setDatum(Object o) {
this.datum = o;

X

public Object getDatum() {
return datum;

¥

public void setLeft(TreeCell t) {
this.left = t;
}

public TreeCell getLeft() {
return left;

3

public void setRight(TreeCell t) {
this.right = t;
}

public TreeCell getRight() {
return right;

}

public String toString() {
String 1String,rString;
if (left == null)
1String = "O";
else
1String = left.toString();

26

if (right == null)
rString = "O";

else
rString = right.toString();
return "(" + 1String + " " + datum + " " + rString + ")";

27

