
CS211, LECTURE 28
COURSE SUMMARY

ANNOUNCEMENTS:

• end of regular consulting: Fri, 5/1

• special hours to finish regrades, pick up work will be
announced on the website

• consulting: forms in 303 Upson, starting 1PM today

• final exam info: Final Exam (on website)
(review info, prior exam posted soon)

• final exam conflicts? see website; due Friday 5/2!

OVERVIEW:

• final exam review

• summary of what we did cover

• summary of what we didn’t cover

• where to go from here…

1. Final Exam Review

1.1 Concepts

1.2 Topics
2. The Summary

2.1 The Nature of Programming

• programming: automating problem solving

• OOP: modeling of information and action
find the nouns! find the verbs!

• OOP fundamentals

• OOP style

- information hiding
- abstraction
- generic programming

• overall theme of CS211: improve your OOP style

2.2 Advanced Math

• discrete math

- logic
- some set theory
- summations

• induction

- base case(s)
- inductive hypothesis
- inductive step
- conclusion
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2.3 Advanced Flow Control

• flow control to design action

• how?

- iteration/looping
- recursion

• which is better?

2.4 Advanced OOP

• inheritance

- inheritance to extend classes to ease reuse
- inheritance to “tweak” functionality

• subtyping and polymorphism

- interfaces to force programmers to be consistent
- interfaces to hide details of implementation to develop

better code
- interfaces to provide a mechanism to supply different

implementations but not change code
• polymorphism and upcasting vs downcasting
- upcast always legal: supertype var gets subtype obj
- downcast depends: subtype var get supertype obj

requires a cast!

• compile time vs run time

• static binding vs dynamic binding

- static binding: compile time assignments, like lookup
of method names -- Java looks at variable type

- dynamic binding -- during run time Java looks at
object’s actual type

• inner classes

- member level
- statement level
- expression level (anon classes)

2.5 Advanced I/O

• namely, GUIs: want to improve interface for user

• event driven programming: user actions trigger actions

• GUI statics

- components
- containers
- layout managers

• GUI dynamics

- events
- event listeners
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2.6 Generic Programming

• Inheritance: extend classes, use interfaces, absrtact
classes

• API

- Collections
- JFC
- util, lang, …

• Object

- toString, hashcode, equals, clone, …

• Cloning: alias, shallow, deep

• Iterators

- array
- list
- more?

• Comparable

• more? Comparators, …

2.7 Algorithm Analysis

• need way to quantify choice in d.s.

- style
- ease
- suitability
- time/space

• techniques:

- best/worst/average case
- big Oh (different kinds of “o”)

• big-oh (aymptotic notation)

- measure aspect of program as function of input size n
- gives upper (perhaps extreme upper) bound estimate
- determine T (or S) as function of n
- drop constants and lower order terms or just count the

dominant operation
- more formal: f(n)=O(g(n)) if f(n)<=cg(n) for some

c0>0 and there’s an n >= n0
- to prove, must find (c0,n0); to disprove, must show

contridiction
2.8 Sorting and Searching

• searching:

- chaotic/random O(maybe forever)
- linear: O(n), but easy to rem!
- binary: O(log n), but need sorted array

• sorting:

- select sort O(n^2), but easy to rem!
- merge sort O(nlog n), but creates extra space
- quick sort O(nlog n), could be O(n^2), but no extra

arrays to create

2.9 Abstract Data Type

• information

• set of operations

• only a specification!

2.10 Data Structure

• collection of information with operations…

• actually, the implementation of the ADT!
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2.11 Foundational Data Structures

• variables

• strings

• arrays

• lists

- different ways to build
- head, tail, head&tail, next/prev links

• array-lists

- “indexable” lists
- “growable” arrays

• trees

- hierarchical, like graphs but no cycles
- binary trees

2.12 Search Structures

• Why?

- want to find information
- need quick/efficient search time

• Basic interface

- search
- insert
- delete

• Linear

- list: O(n)
- sorted array: binary search: O(log n), but need to sort
• Hierarchical
- binary search tree: O(log n), but could be O(n) (why?)
- better binary search tree?

• hashing

- key-value pairs (see exercise 3 sol for good example!)
- convert key to hashcode for index into array
- store k-v pairs in linked list buckets
- collisions and space/time issues (load capacity)
- O(1) for retrieval, but could be as bad as O(n)

2.13 Sequence Structures

• Why?

- want structure with quick storage and retrieval time
- could use for searching, but might give poor time

• Basic interface

- put
- get

• Linear

- stack: LIFO (put puts last, get takes last); O(1)
- queue: FIFO (put puts list, get takes 1st); O(1)
- PQ: LIFO, but min/max priority reorders the Q
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• Hierarchical
- heap: sim to BST but ordering on each level
- use heap for PQ
- put, get: O(log n)
- most efficient way to implement is with array
- handy for PQ --> need to store PQ elements

2.14 Graphs

• pull things together! use search and sequence structures
to do your bidding

• theory: G = {V, E}; V is set of nodes, E is set of edges

- adjacent edges
- adjacent nodes

• types

- undirected vs directed
- unweighted vs weighted
• building graphs
- adjacency matrix
- adjacency list (we did a lot with this)

• problems:

- traversals: DFS vs BFS
- SSSP: single source shortest path

unweighted
weighted: Dijkstra’s Algorithm

- minimum spanning trees: Prim’s algorithm

3. What’s Next?

3.1 What we didn’t cover this time…

• other kinds of timing analysis (best, average)

• recurrence relations (running time of recursive
algorithms)

• balancing binary search trees

3.2 Where to go from here?

• cover what we missed (see the textbooks…)

• implement in different languages (CS312…)

• learn about algorithms (CS482…)

• build wonderful software!
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