
CS211, LECTURE 28
COURSE SUMMARY

ANNOUNCEMENTS:

• end of regular consulting: Fri, 5/1

• special hours to finish regrades, pick up work will be
announced on the website

• consulting: forms in 303 Upson, starting 1PM today

• final exam info: Final Exam (on website)
(review info, prior exam posted soon)

• final exam conflicts? see website; due Friday 5/2!

OVERVIEW:

• final exam review

• summary of what we did cover

• summary of what we didn’t cover

• where to go from here…

1. Final Exam Review

1.1 Concepts

1.2 Topics
2. The Summary

2.1 The Nature of Programming

• programming: automating problem solving

• OOP: modeling of information and action
find the nouns! find the verbs!

• OOP fundamentals

• OOP style

- information hiding
- abstraction
- generic programming

• overall theme of CS211: improve your OOP style

2.2 Advanced Math

• discrete math

- logic
- some set theory
- summations

• induction

- base case(s)
- inductive hypothesis
- inductive step
- conclusion
1
 2
3
 4



2.3 Advanced Flow Control

• flow control to design action

• how?

- iteration/looping
- recursion

• which is better?

2.4 Advanced OOP

• inheritance

- inheritance to extend classes to ease reuse
- inheritance to “tweak” functionality

• subtyping and polymorphism

- interfaces to force programmers to be consistent
- interfaces to hide details of implementation to develop

better code
- interfaces to provide a mechanism to supply different

implementations but not change code
• polymorphism and upcasting vs downcasting
- upcast always legal: supertype var gets subtype obj
- downcast depends: subtype var get supertype obj

requires a cast!

• compile time vs run time

• static binding vs dynamic binding

- static binding: compile time assignments, like lookup
of method names -- Java looks at variable type

- dynamic binding -- during run time Java looks at
object’s actual type

• inner classes

- member level
- statement level
- expression level (anon classes)

2.5 Advanced I/O

• namely, GUIs: want to improve interface for user

• event driven programming: user actions trigger actions

• GUI statics

- components
- containers
- layout managers

• GUI dynamics

- events
- event listeners
5
 6
7
 8



2.6 Generic Programming

• Inheritance: extend classes, use interfaces, absrtact
classes

• API

- Collections
- JFC
- util, lang, …

• Object

- toString, hashcode, equals, clone, …

• Cloning: alias, shallow, deep

• Iterators

- array
- list
- more?

• Comparable

• more? Comparators, …

2.7 Algorithm Analysis

• need way to quantify choice in d.s.

- style
- ease
- suitability
- time/space

• techniques:

- best/worst/average case
- big Oh (different kinds of “o”)

• big-oh (aymptotic notation)

- measure aspect of program as function of input size n
- gives upper (perhaps extreme upper) bound estimate
- determine T (or S) as function of n
- drop constants and lower order terms or just count the

dominant operation
- more formal: f(n)=O(g(n)) if f(n)<=cg(n) for some

c0>0 and there’s an n >= n0
- to prove, must find (c0,n0); to disprove, must show

contridiction
2.8 Sorting and Searching

• searching:

- chaotic/random O(maybe forever)
- linear: O(n), but easy to rem!
- binary: O(log n), but need sorted array

• sorting:

- select sort O(n^2), but easy to rem!
- merge sort O(nlog n), but creates extra space
- quick sort O(nlog n), could be O(n^2), but no extra

arrays to create

2.9 Abstract Data Type

• information

• set of operations

• only a specification!

2.10 Data Structure

• collection of information with operations…

• actually, the implementation of the ADT!
9
 10
11
 12



2.11 Foundational Data Structures

• variables

• strings

• arrays

• lists

- different ways to build
- head, tail, head&tail, next/prev links

• array-lists

- “indexable” lists
- “growable” arrays

• trees

- hierarchical, like graphs but no cycles
- binary trees

2.12 Search Structures

• Why?

- want to find information
- need quick/efficient search time

• Basic interface

- search
- insert
- delete

• Linear

- list: O(n)
- sorted array: binary search: O(log n), but need to sort
• Hierarchical
- binary search tree: O(log n), but could be O(n) (why?)
- better binary search tree?

• hashing

- key-value pairs (see exercise 3 sol for good example!)
- convert key to hashcode for index into array
- store k-v pairs in linked list buckets
- collisions and space/time issues (load capacity)
- O(1) for retrieval, but could be as bad as O(n)

2.13 Sequence Structures

• Why?

- want structure with quick storage and retrieval time
- could use for searching, but might give poor time

• Basic interface

- put
- get

• Linear

- stack: LIFO (put puts last, get takes last); O(1)
- queue: FIFO (put puts list, get takes 1st); O(1)
- PQ: LIFO, but min/max priority reorders the Q
13
 14
15
 16



• Hierarchical
- heap: sim to BST but ordering on each level
- use heap for PQ
- put, get: O(log n)
- most efficient way to implement is with array
- handy for PQ --> need to store PQ elements

2.14 Graphs

• pull things together! use search and sequence structures
to do your bidding

• theory: G = {V, E}; V is set of nodes, E is set of edges

- adjacent edges
- adjacent nodes

• types

- undirected vs directed
- unweighted vs weighted
• building graphs
- adjacency matrix
- adjacency list (we did a lot with this)

• problems:

- traversals: DFS vs BFS
- SSSP: single source shortest path

unweighted
weighted: Dijkstra’s Algorithm

- minimum spanning trees: Prim’s algorithm

3. What’s Next?

3.1 What we didn’t cover this time…

• other kinds of timing analysis (best, average)

• recurrence relations (running time of recursive
algorithms)

• balancing binary search trees

3.2 Where to go from here?

• cover what we missed (see the textbooks…)

• implement in different languages (CS312…)

• learn about algorithms (CS482…)

• build wonderful software!
17
 18
19
 20


	CS211, Lecture 28
	Course Summary
	Announcements:
	Overview:
	1. Final Exam Review
	1.1 Concepts
	1.2 Topics

	2. The Summary
	2.1 The Nature of Programming
	2.2 Advanced Math
	2.3 Advanced Flow Control
	2.4 Advanced OOP
	2.5 Advanced I/O
	2.6 Generic Programming
	2.7 Algorithm Analysis
	2.8 Sorting and Searching
	2.9 Abstract Data Type
	2.10 Data Structure
	2.11 Foundational Data Structures
	2.12 Search Structures
	2.13 Sequence Structures
	2.14 Graphs

	3. What’s Next?
	3.1 What we didn’t cover this time…
	3.2 Where to go from here?



