
CS211, LECTURE 28
COURSE SUMMARY

ANNOUNCEMENTS:

• end of regular consulting: Fri, 5/1

• special hours to finish regrades, pick up work will be
announced on the website

• consulting: forms in 303 Upson, starting 1PM today

• final exam info: Final Exam (on website)
(review info, prior exam posted soon)

• final exam conflicts? see website; due Friday 5/2!

OVERVIEW:

• final exam review

• summary of what we did cover

• summary of what we didn’t cover

• where to go from here…
CS211, Lecture 28 1



1. Final Exam Review

1.1 Concepts

1.2 Topics
Course Summary Final Exam Review 2



2. The Summary

2.1 The Nature of Programming

• programming: automating problem solving

• OOP: modeling of information and action
find the nouns! find the verbs!

• OOP fundamentals

• OOP style

- information hiding

- abstraction

- generic programming

• overall theme of CS211: improve your OOP style
Course Summary The Summary 3



2.2 Advanced Math

• discrete math

- logic

- some set theory

- summations

• induction

- base case(s)

- inductive hypothesis

- inductive step

- conclusion
Course Summary The Summary 4



2.3 Advanced Flow Control

• flow control to design action

• how?

- iteration/looping

- recursion

• which is better?
Course Summary The Summary 5



2.4 Advanced OOP

• inheritance

- inheritance to extend classes to ease reuse

- inheritance to “tweak” functionality

• subtyping and polymorphism

- interfaces to force programmers to be consistent

- interfaces to hide details of implementation to
develop better code

- interfaces to provide a mechanism to supply different
implementations but not change code
Course Summary The Summary 6



• polymorphism and upcasting vs downcasting

- upcast always legal: supertype var gets subtype obj

- downcast depends: subtype var get supertype obj
requires a cast!

• compile time vs run time

• static binding vs dynamic binding

- static binding: compile time assignments, like lookup
of method names -- Java looks at variable type

- dynamic binding -- during run time Java looks at
object’s actual type

• inner classes

- member level

- statement level

- expression level (anon classes)
Course Summary The Summary 7



2.5 Advanced I/O

• namely, GUIs: want to improve interface for user

• event driven programming: user actions trigger actions

• GUI statics

- components

- containers

- layout managers

• GUI dynamics

- events

- event listeners
Course Summary The Summary 8



2.6 Generic Programming

• Inheritance: extend classes, use interfaces, absrtact
classes

• API

- Collections

- JFC

- util, lang, …

• Object

- toString, hashcode, equals, clone, …

• Cloning: alias, shallow, deep

• Iterators

- array

- list

- more?

• Comparable

• more? Comparators, …
Course Summary The Summary 9



2.7 Algorithm Analysis

• need way to quantify choice in d.s.

- style

- ease

- suitability

- time/space

• techniques:

- best/worst/average case

- big Oh (different kinds of “o”)

• big-oh (aymptotic notation)

- measure aspect of program as function of input size n

- gives upper (perhaps extreme upper) bound estimate

- determine T (or S) as function of n

- drop constants and lower order terms or just count the
dominant operation

- more formal: f(n)=O(g(n)) if f(n)<=cg(n) for some
c0>0 and there’s an n >= n0

- to prove, must find (c0,n0); to disprove, must show
contridiction
Course Summary The Summary 10



2.8 Sorting and Searching

• searching:

- chaotic/random O(maybe forever)

- linear: O(n), but easy to rem!

- binary: O(log n), but need sorted array

• sorting:

- select sort O(n^2), but easy to rem!

- merge sort O(nlog n), but creates extra space

- quick sort O(nlog n), could be O(n^2), but no extra
arrays to create
Course Summary The Summary 11



2.9 Abstract Data Type

• information

• set of operations

• only a specification!

2.10 Data Structure

• collection of information with operations…

• actually, the implementation of the ADT!
Course Summary The Summary 12



2.11 Foundational Data Structures

• variables

• strings

• arrays

• lists

- different ways to build

- head, tail, head&tail, next/prev links

• array-lists

- “indexable” lists

- “growable” arrays

• trees

- hierarchical, like graphs but no cycles

- binary trees
Course Summary The Summary 13



2.12 Search Structures

• Why?

- want to find information

- need quick/efficient search time

• Basic interface

- search

- insert

- delete

• Linear

- list: O(n)

- sorted array: binary search: O(log n), but need to sort
Course Summary The Summary 14



• Hierarchical

- binary search tree: O(log n), but could be O(n) (why?)

- better binary search tree?

• hashing

- key-value pairs (see exercise 3 sol for good example!)

- convert key to hashcode for index into array

- store k-v pairs in linked list buckets

- collisions and space/time issues (load capacity)

- O(1) for retrieval, but could be as bad as O(n)
Course Summary The Summary 15



2.13 Sequence Structures

• Why?

- want structure with quick storage and retrieval time

- could use for searching, but might give poor time

• Basic interface

- put

- get

• Linear

- stack: LIFO (put puts last, get takes last); O(1)

- queue: FIFO (put puts list, get takes 1st); O(1)

- PQ: LIFO, but min/max priority reorders the Q
Course Summary The Summary 16



• Hierarchical

- heap: sim to BST but ordering on each level

- use heap for PQ

- put, get: O(log n)

- most efficient way to implement is with array

- handy for PQ --> need to store PQ elements
Course Summary The Summary 17



2.14 Graphs

• pull things together! use search and sequence structures
to do your bidding

• theory: G = {V, E}; V is set of nodes, E is set of edges

- adjacent edges

- adjacent nodes

• types

- undirected vs directed

- unweighted vs weighted
Course Summary The Summary 18



• building graphs

- adjacency matrix

- adjacency list (we did a lot with this)

• problems:

- traversals: DFS vs BFS

- SSSP: single source shortest path
unweighted
weighted: Dijkstra’s Algorithm

- minimum spanning trees: Prim’s algorithm
Course Summary The Summary 19



3. What’s Next?

3.1 What we didn’t cover this time…

• other kinds of timing analysis (best, average)

• recurrence relations (running time of recursive
algorithms)

• balancing binary search trees

3.2 Where to go from here?

• cover what we missed (see the textbooks…)

• implement in different languages (CS312…)

• learn about algorithms (CS482…)

• build wonderful software!
Course Summary What’s Next? 20


	CS211, Lecture 28
	Course Summary
	Announcements:
	. end of regular consulting: Fri, 5/1
	. special hours to finish regrades, pick up work will be announced on the website
	. consulting: forms in 303 Upson, starting 1PM today
	. final exam info: Final Exam (on website) (review info, prior exam posted soon)
	. final exam conflicts? see website; due Friday 5/2!

	Overview:
	. final exam review
	. summary of what we did cover
	. summary of what we didn’t cover
	. where to go from here…


	1. Final Exam Review
	1.1 Concepts
	1.2 Topics

	2. The Summary
	2.1 The Nature of Programming
	. programming: automating problem solving
	. OOP: modeling of information and action find the nouns! find the verbs!
	. OOP fundamentals
	. OOP style
	- information hiding
	- abstraction
	- generic programming

	. overall theme of CS211: improve your OOP style

	2.2 Advanced Math
	. discrete math
	- logic
	- some set theory
	- summations

	. induction
	- base case(s)
	- inductive hypothesis
	- inductive step
	- conclusion


	2.3 Advanced Flow Control
	. flow control to design action
	. how?
	- iteration/looping
	- recursion

	. which is better?

	2.4 Advanced OOP
	. inheritance
	- inheritance to extend classes to ease reuse
	- inheritance to “tweak” functionality

	. subtyping and polymorphism
	- interfaces to force programmers to be consistent
	- interfaces to hide details of implementation to develop better code
	- interfaces to provide a mechanism to supply different implementations but not change code

	. polymorphism and upcasting vs downcasting
	- upcast always legal: supertype var gets subtype obj
	- downcast depends: subtype var get supertype obj requires a cast!
	. compile time vs run time
	. static binding vs dynamic binding
	- static binding: compile time assignments, like lookup of method names -- Java looks at variable type
	- dynamic binding -- during run time Java looks at object’s actual type

	. inner classes
	- member level
	- statement level
	- expression level (anon classes)



	2.5 Advanced I/O
	. namely, GUIs: want to improve interface for user
	. event driven programming: user actions trigger actions
	. GUI statics
	- components
	- containers
	- layout managers

	. GUI dynamics
	- events
	- event listeners


	2.6 Generic Programming
	. Inheritance: extend classes, use interfaces, absrtact classes
	. API
	- Collections
	- JFC
	- util, lang, …

	. Object
	- toString, hashcode, equals, clone, …

	. Cloning: alias, shallow, deep
	. Iterators
	- array
	- list
	- more?

	. Comparable
	. more? Comparators, …

	2.7 Algorithm Analysis
	. need way to quantify choice in d.s.
	- style
	- ease
	- suitability
	- time/space

	. techniques:
	- best/worst/average case
	- big Oh (different kinds of “o”)

	. big-oh (aymptotic notation)
	- measure aspect of program as function of input size n
	- gives upper (perhaps extreme upper) bound estimate
	- determine T (or S) as function of n
	- drop constants and lower order terms or just count the dominant operation
	- more formal: f(n)=O(g(n)) if f(n)<=cg(n) for some c0>0 and there’s an n >= n0
	- to prove, must find (c0,n0); to disprove, must show contridiction


	2.8 Sorting and Searching
	. searching:
	- chaotic/random O(maybe forever)
	- linear: O(n), but easy to rem!
	- binary: O(log n), but need sorted array

	. sorting:
	- select sort O(n^2), but easy to rem!
	- merge sort O(nlog n), but creates extra space
	- quick sort O(nlog n), could be O(n^2), but no extra arrays to create


	2.9 Abstract Data Type
	. information
	. set of operations
	. only a specification!
	2.10 Data Structure
	. collection of information with operations…
	. actually, the implementation of the ADT!


	2.11 Foundational Data Structures
	. variables
	. strings
	. arrays
	. lists
	- different ways to build
	- head, tail, head&tail, next/prev links

	. array-lists
	- “indexable” lists
	- “growable” arrays

	. trees
	- hierarchical, like graphs but no cycles
	- binary trees


	2.12 Search Structures
	. Why?
	- want to find information
	- need quick/efficient search time

	. Basic interface
	- search
	- insert
	- delete

	. Linear
	- list: O(n)
	- sorted array: binary search: O(log n), but need to sort

	. Hierarchical
	- binary search tree: O(log n), but could be O(n) (why?)
	- better binary search tree?
	. hashing
	- key-value pairs (see exercise 3 sol for good example!)
	- convert key to hashcode for index into array
	- store k-v pairs in linked list buckets
	- collisions and space/time issues (load capacity)
	- O(1) for retrieval, but could be as bad as O(n)



	2.13 Sequence Structures
	. Why?
	- want structure with quick storage and retrieval time
	- could use for searching, but might give poor time

	. Basic interface
	- put
	- get

	. Linear
	- stack: LIFO (put puts last, get takes last); O(1)
	- queue: FIFO (put puts list, get takes 1st); O(1)
	- PQ: LIFO, but min/max priority reorders the Q

	. Hierarchical
	- heap: sim to BST but ordering on each level
	- use heap for PQ
	- put, get: O(log n)
	- most efficient way to implement is with array
	- handy for PQ --> need to store PQ elements


	2.14 Graphs
	. pull things together! use search and sequence structures to do your bidding
	. theory: G = {V, E}; V is set of nodes, E is set of edges
	- adjacent edges
	- adjacent nodes

	. types
	- undirected vs directed
	- unweighted vs weighted

	. building graphs
	- adjacency matrix
	- adjacency list (we did a lot with this)
	. problems:
	- traversals: DFS vs BFS
	- SSSP: single source shortest path unweighted weighted: Dijkstra’s Algorithm
	- minimum spanning trees: Prim’s algorithm




	3. What’s Next?
	3.1 What we didn’t cover this time…
	. other kinds of timing analysis (best, average)
	. recurrence relations (running time of recursive algorithms)
	. balancing binary search trees

	3.2 Where to go from here?
	. cover what we missed (see the textbooks…)
	. implement in different languages (CS312…)
	. learn about algorithms (CS482…)
	. build wonderful software!



