
CS211, LECTURE 27
MORE ALGORITHMS

ANNOUNCEMENTS:

• course almost done: L28 is summary, evals

• A6, A7 due soon

• end of regular consulting: Fri, 5/1

• special hours to finish regrades, pick up work will be
announced on the website

• consulting: forms in 303 Upson, starting 1PM today

• final exam info: Final Exam (on website)
(review info, prior exam posted soon)

• final exam conflicts? see website; due Friday 5/2!

OVERVIEW:

• shortest path algorithm for weighted graph
(Dijkstra’s algorithm)

• all pairs source shortest path
(Floyd’s algorithm)

• minimum cost spanning trees
(Prim’s algorithm, Kruskal’s algorithm)

1. Shortest Path for Weighted Graphs

1.1 Assumptions

• could be directed or undirected

• non-negative weights

1.2 Dijkstra’s Algorithm

• very famous

• example of greedy algorithm

• on-line demo:
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/
dijkstra/Dijkstra.shtml
1.3 Wordy Gist: Based ON BFS

• BFS: visit the nodes by “levels” or “layers”

- put new (unvisited) nodes in Q
- look at each node at each layer
- process each node and repeat
- don’t re-process already-visited nodes

• New twist!

- don’t treat all unvisited nodes as equals
- want smallest accumulation of weights
- so, need to sum weights along the way and maybe

pick a different node than what’s in front of the Q

1.4 Physical Gist

Want shortest path from A to I

Imagine graph is weights and strings, in
which strings are cut to scaled lengths

Pick up weights one at a time

Pick up A

String becomes tight first at B

record: A→B

Pick up B

String becomes tight first at E

record: A→B→E

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

1
 2
3
 4

1.5 Pseudocode Gist: Version 1

• Longish algorithm that uses cost in organizing priority
queue to choose nodes

• a bit expanded on “wordy gist” from before:

- pick the highest priority node (the smallest dist)
- tag the node, record previous, update cost:

PQ element: <node,accumulating cost>
- repeat until no more PQ or no more unvisted nodes

(note: tagging happens after extract from PQ)

• Visualization:

String now becomes tighter at D

Why? After E comes F or H, each of
which is longer than D

record: A→D

We could have gotten to E via A

Pick up D, followed by F

But, G will be in “next round”

so, record: A→D→G

Eventually:

record: A→D→G→H→I

Forms a tree

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

A
DB

C

1

2

3

3 E
F

4

1

Current
PQ

Entry

Current
Node

Adjacent
Nodes

PQ
Previous

Node

<A, 0> A []
B [<B,1>] A
C [<B,1>,<C,2>] A

<B,1> B [<C,2>]
D [<C,2>,<D,4>] A

<C,2> C
E [<D,4>,<E,5>] C

<D,4> D
F [<E,5>,<F,8>] D

<E,5> E
F [<F,6>,<F,8>] E

<F,6> F
[<F,8>] F
1.6 Code Gist: Version 1

// from dijkstra1 in Digraph.java:

resetVerticies();
boolean done = false;
SeqStructure toDo = new Heap(edgeCount); // use min heap!
SeqStructure path = new QueueAsList();// should use stack

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.setPrev(null);
toDo.put(new MinPQElement(originVertex,0));

while(!done && !toDo.isEmpty()) {
MinPQElement entry = (MinPQElement) toDo.get();
Vertex currentVertex = (Vertex) entry.getItem();
// code not shown

} // end while

path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

1.7 Pseudocode Gist: Version 2

• Data:

- s: start vertex
- c(i,j): cost from i to j

- dist(n): distance from s to n (initially)
- PQ to store neighboring nodes and choose the one

with min cost at each “layer”
(note: PQ size is edgeCount -> max # of adj nodes)

• Algorithm:
dist(s) <- 0
while (some vertices are unvisited)

v <- unmarked vertex with smallest dist
(get from the PQ)

tag v
for each node w adjacent to v

dist(w) = min(dist(w),dist(v)+c(v,w))
end for

end while

∞

5
 6
7
 8

1.8 Code Gist: Version 2

public SeqStructure dijkstra3(Object origin,Object end) {

resetVerticies(Integer.MAX_VALUE);
SeqStructure toDo = new Heap(edgeCount);
SeqStructure path = new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);

originVertex.setPrev(null);
originVertex.setCost(0);
toDo.put(new MinPQElement(originVertex,0));

while(!toDo.isEmpty()) {
MinPQElement entry = (MinPQElement) toDo.get();
Vertex currentVertex = (Vertex) entry.getItem();
currentVertex.visit();

for (Iterator edges=currentVertex.getEdgeIterator();
edges.hasNext();) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();
int nextCost = currentEdge.getWeight() +

currentVertex.getCost();

if (nextVertex.getCost() > nextCost) {
nextVertex.setCost(nextCost);
nextVertex.setPrev(currentVertex);
toDo.put(

new MinPQElement(nextVertex,nextCost));
}

}

}
path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

}

1.9 Proof Gist

• Induction on iterations of while loop

- each iteration moves one new node into lifted set
- do induction on set of nodes ordered in the sequence

in which they get put into the lifted set

• Induction:

- base case: path from origin to self is 0
- inductive hypothesis: assume that the shortest paths to

all nodes currently in the lifted set have been
computed correctly

- inductive hypothesis: the next node that gets lifted is
correct

• see Panels 16–19 at http://www.cs.cornell.edu/courses/
cs211/2002sp/Lectures/graphs-quad.pdf
1.10 Run-time Analysis for Adjacency List

• dominant operation of method is while loop (processing
unvisited nodes)

• time for processing each vertex:

- each vertex processed once
- all edges from a vertex might be processed
- so, for each node, add up time for each edge
- so, O(|V| + |E|) (see BFS time)

• PQ ops?

- worst case: each edge has a node to queue and
dequeue (see for loop and inner if)

- so, PQ has max length of |E|
- from heap: put is O(log n), get is O(log n)
- so, adding each edge’s contribution gives

O(|E| log |E|)

• total: O(|V| + |E| log |E|)

1.11 Adjacency Matrix

• see DS&A pg 577

• O(|V|^2 + |E| log |E|)

2. All Pairs Shortest Path

2.1 Problem

• given edge weighted graph

• for each pair of verticies find length of shortest path

2.2 One Solution

• run Dijkstra’s algorithm |V|+ times

• use each vertex as the origin

2.3 Floyd’s Algorithm

• use adjacency matrix

• see 16.4.2 in DS&A
9
 10
11
 12

3. Spanning Trees

3.1 Interesting Thing About Traversals

• BFS, DFS don’t repeat -> no cycles

• can backtrack to find a new unvisited node, but won’t
repeat it

• what does that look like?

• a rooted tree!

• ex) BFS = {A,B,D,E,G,H,F,I,C}

3.2 Spanning Tree

• effectively a subset of a graph:

- all nodes sames as in G
- tree edges must be graph edges (but nec all!)
- connected
- acyclic

• constructing?

- pick a starting edge
- add edges with unvisited dest nodes

A D G

B E H

C F I
3.3 Minimal Spanning Tree

• given: undirected, weighted graph

• weight of spanning tree = sum of tree edge weights

• minimum spanning tree:

- any spanning tree with smallest weight
- could have many such trees

3.4 Application

• see DS&SD pg 899

• find a cheap way to connect a bunch of nodes

- as in something travelling an entire graph
- plane needs to travel to a set of cities
- wants cheapest path to take that still hits all cities

3.5 Compare to SSSP

• SSSP: shortest path to a node
what’s cheapest way to get from A to Z using nodes
{A,…,Z}

• MST: smallest sum of weights connecting each node
what’s cheapest way to connect all nodes {A,…,Z}?

A

B C

44

1

A

B C

44

1

A

B C

44

1

weighted, undirected graph

SSSP for A→C: {A,C}
Tree: { {A,B}, {A,C} }

MST for graph
Tree: { {A,B}, {B,C} }
13
 14
15
 16

3.6 Prim’s Algorithm

• modify Dijsktra’s Algorithm:

- put edges in PQ
- associate edges with length of edge (don’t add costs)
- otherwise, algorithm is the same

3.7 Kruskal’s Algorithm

• add edges by increasing order of weights

• not allowed to add edges that form cycles

• see DS&A 16.5.2

4. Exercises

• Modify the heap code to use a minimum heap.

• Modify the heap code to provide a sorted string for
describing a priority queue.

• Prove by induction that Dijkstra’s algorithm is correct.

• Implement Prim’s algorithm.
17
 18

	CS211, Lecture 27
	More Algorithms
	Announcements:
	Overview:
	1. Shortest Path for Weighted Graphs
	1.1 Assumptions
	1.2 Dijkstra’s Algorithm
	1.3 Wordy Gist: Based ON BFS
	1.4 Physical Gist
	1.5 Pseudocode Gist: Version 1
	1.6 Code Gist: Version 1
	1.7 Pseudocode Gist: Version 2
	1.8 Code Gist: Version 2
	1.9 Proof Gist
	1.10 Run-time Analysis for Adjacency List
	1.11 Adjacency Matrix

	2. All Pairs Shortest Path
	2.1 Problem
	2.2 One Solution
	2.3 Floyd’s Algorithm

	3. Spanning Trees
	3.1 Interesting Thing About Traversals
	3.2 Spanning Tree
	3.3 Minimal Spanning Tree
	3.4 Application
	3.5 Compare to SSSP
	3.6 Prim’s Algorithm
	3.7 Kruskal’s Algorithm

	4. Exercises

