
CS211, LECTURE 27
MORE ALGORITHMS

ANNOUNCEMENTS:

• course almost done: L28 is summary, evals

• A6, A7 due soon

• end of regular consulting: Fri, 5/1

• special hours to finish regrades, pick up work will be
announced on the website

• consulting: forms in 303 Upson, starting 1PM today

• final exam info: Final Exam (on website)
(review info, prior exam posted soon)

• final exam conflicts? see website; due Friday 5/2!

OVERVIEW:

• shortest path algorithm for weighted graph
(Dijkstra’s algorithm)

• all pairs source shortest path
(Floyd’s algorithm)

• minimum cost spanning trees
(Prim’s algorithm, Kruskal’s algorithm)

1. Shortest Path for Weighted Graphs

1.1 Assumptions

• could be directed or undirected

• non-negative weights

1.2 Dijkstra’s Algorithm

• very famous

• example of greedy algorithm

• on-line demo:
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/
dijkstra/Dijkstra.shtml
1.3 Wordy Gist: Based ON BFS

• BFS: visit the nodes by “levels” or “layers”

- put new (unvisited) nodes in Q
- look at each node at each layer
- process each node and repeat
- don’t re-process already-visited nodes

• New twist!

- don’t treat all unvisited nodes as equals
- want smallest accumulation of weights
- so, need to sum weights along the way and maybe

pick a different node than what’s in front of the Q

1.4 Physical Gist

Want shortest path from A to I

Imagine graph is weights and strings, in
which strings are cut to scaled lengths

Pick up weights one at a time

Pick up A

String becomes tight first at B

record: A→B

Pick up B

String becomes tight first at E

record: A→B→E
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1.5 Pseudocode Gist: Version 1

• Longish algorithm that uses cost in organizing priority
queue to choose nodes

• a bit expanded on “wordy gist” from before:

- pick the highest priority node (the smallest dist)
- tag the node, record previous, update cost:

PQ element: <node,accumulating cost>
- repeat until no more PQ or no more unvisted nodes

(note: tagging happens after extract from PQ)

• Visualization:

String now becomes tighter at D

Why? After E comes F or H, each of
which is longer than D

record: A→D

We could have gotten to E via A

Pick up D, followed by F

But, G will be in “next round”

so, record: A→D→G

Eventually:

record: A→D→G→H→I

Forms a tree
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<A, 0> A [ ]
B [<B,1>] A
C [<B,1>,<C,2>] A

<B,1> B [<C,2>]
D [<C,2>,<D,4>] A

<C,2> C
E [<D,4>,<E,5>] C

<D,4> D
F [<E,5>,<F,8>] D

<E,5> E
F [<F,6>,<F,8>] E

<F,6> F
[<F,8>] F
1.6 Code Gist: Version 1

// from dijkstra1 in Digraph.java:

resetVerticies();
boolean done = false;
SeqStructure toDo = new Heap(edgeCount); // use min heap!
SeqStructure path = new QueueAsList();// should use stack

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.setPrev(null);
toDo.put(new MinPQElement(originVertex,0));

while(!done && !toDo.isEmpty()) {
MinPQElement entry = (MinPQElement) toDo.get();
Vertex currentVertex = (Vertex) entry.getItem();
// code not shown

} // end while

path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

1.7 Pseudocode Gist: Version 2

• Data:

- s: start vertex
- c(i,j): cost from i to j

- dist(n): distance from s to n (initially )
- PQ to store neighboring nodes and choose the one

with min cost at each “layer”
(note: PQ size is edgeCount -> max # of adj nodes)

• Algorithm:
dist(s) <- 0
while (some vertices are unvisited)

v <- unmarked vertex with smallest dist
(get from the PQ)

tag v
for each node w adjacent to v

dist(w) = min(dist(w),dist(v)+c(v,w))
end for

end while

∞
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1.8 Code Gist: Version 2

public SeqStructure dijkstra3(Object origin,Object end) {

resetVerticies(Integer.MAX_VALUE);
SeqStructure toDo = new Heap(edgeCount);
SeqStructure path = new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);

originVertex.setPrev(null);
originVertex.setCost(0);
toDo.put(new MinPQElement(originVertex,0));

while(!toDo.isEmpty()) {
MinPQElement entry = (MinPQElement) toDo.get();
Vertex currentVertex = (Vertex) entry.getItem();
currentVertex.visit();

for (Iterator edges=currentVertex.getEdgeIterator();
edges.hasNext(); ) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();
int nextCost = currentEdge.getWeight() +

currentVertex.getCost();

if (nextVertex.getCost() > nextCost ) {
nextVertex.setCost(nextCost);
nextVertex.setPrev(currentVertex);
toDo.put(

new MinPQElement(nextVertex,nextCost));
}

}

}
path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

}

1.9 Proof Gist

• Induction on iterations of while loop

- each iteration moves one new node into lifted set
- do induction on set of nodes ordered in the sequence

in which they get put into the lifted set

• Induction:

- base case: path from origin to self is 0
- inductive hypothesis: assume that the shortest paths to

all nodes currently in the lifted set have been
computed correctly

- inductive hypothesis: the next node that gets lifted is
correct

• see Panels 16–19 at http://www.cs.cornell.edu/courses/
cs211/2002sp/Lectures/graphs-quad.pdf
1.10 Run-time Analysis for Adjacency List

• dominant operation of method is while loop (processing
unvisited nodes)

• time for processing each vertex:

- each vertex processed once
- all edges from a vertex might be processed
- so, for each node, add up time for each edge
- so, O(|V| + |E|) (see BFS time)

• PQ ops?

- worst case: each edge has a node to queue and
dequeue (see for loop and inner if)

- so, PQ has max length of |E|
- from heap: put is O(log n), get is O(log n)
- so, adding each edge’s contribution gives

O(|E| log |E|)

• total: O(|V| + |E| log |E|)

1.11 Adjacency Matrix

• see DS&A pg 577

• O(|V|^2 + |E| log |E|)

2. All Pairs Shortest Path

2.1 Problem

• given edge weighted graph

• for each pair of verticies find length of shortest path

2.2 One Solution

• run Dijkstra’s algorithm |V|+ times

• use each vertex as the origin

2.3 Floyd’s Algorithm

• use adjacency matrix

• see 16.4.2 in DS&A
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3. Spanning Trees

3.1 Interesting Thing About Traversals

• BFS, DFS don’t repeat -> no cycles

• can backtrack to find a new unvisited node, but won’t
repeat it

• what does that look like?

• a rooted tree!

• ex) BFS = {A,B,D,E,G,H,F,I,C}

3.2 Spanning Tree

• effectively a subset of a graph:

- all nodes sames as in G
- tree edges must be graph edges (but nec all!)
- connected
- acyclic

• constructing?

- pick a starting edge
- add edges with unvisited dest nodes

A D G

B E H

C F I
3.3 Minimal Spanning Tree

• given: undirected, weighted graph

• weight of spanning tree = sum of tree edge weights

• minimum spanning tree:

- any spanning tree with smallest weight
- could have many such trees

3.4 Application

• see DS&SD pg 899

• find a cheap way to connect a bunch of nodes

- as in something travelling an entire graph
- plane needs to travel to a set of cities
- wants cheapest path to take that still hits all cities

3.5 Compare to SSSP

• SSSP: shortest path to a node
what’s cheapest way to get from A to Z using nodes
{A,…,Z}

• MST: smallest sum of weights connecting each node
what’s cheapest way to connect all nodes {A,…,Z}?
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weighted, undirected graph

SSSP for A→C: {A,C}
Tree: { {A,B}, {A,C} }

MST for graph
Tree: { {A,B}, {B,C} }
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3.6 Prim’s Algorithm

• modify Dijsktra’s Algorithm:

- put edges in PQ
- associate edges with length of edge (don’t add costs)
- otherwise, algorithm is the same

3.7 Kruskal’s Algorithm

• add edges by increasing order of weights

• not allowed to add edges that form cycles

• see DS&A 16.5.2

4. Exercises

• Modify the heap code to use a minimum heap.

• Modify the heap code to provide a sorted string for
describing a priority queue.

• Prove by induction that Dijkstra’s algorithm is correct.

• Implement Prim’s algorithm.
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