
CS211, LECTURE 27
MORE ALGORITHMS

ANNOUNCEMENTS:

• course almost done: L28 is summary, evals

• A6, A7 due soon

• end of regular consulting: Fri, 5/1

• special hours to finish regrades, pick up work will be
announced on the website

• consulting: forms in 303 Upson, starting 1PM today

• final exam info: Final Exam (on website)
(review info, prior exam posted soon)

• final exam conflicts? see website; due Friday 5/2!

OVERVIEW:

• shortest path algorithm for weighted graph
(Dijkstra’s algorithm)

• all pairs source shortest path
(Floyd’s algorithm)

• minimum cost spanning trees
(Prim’s algorithm, Kruskal’s algorithm)
CS211, Lecture 27 1



1. Shortest Path for Weighted Graphs

1.1 Assumptions

• could be directed or undirected

• non-negative weights

1.2 Dijkstra’s Algorithm

• very famous

• example of greedy algorithm

• on-line demo:
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/
dijkstra/Dijkstra.shtml
More Algorithms Shortest Path for Weighted Graphs 2



1.3 Wordy Gist: Based ON BFS

• BFS: visit the nodes by “levels” or “layers”

- put new (unvisited) nodes in Q

- look at each node at each layer

- process each node and repeat

- don’t re-process already-visited nodes

• New twist!

- don’t treat all unvisited nodes as equals

- want smallest accumulation of weights

- so, need to sum weights along the way and maybe
pick a different node than what’s in front of the Q
More Algorithms Shortest Path for Weighted Graphs 3



1.4 Physical Gist

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

• Want shortest path from A to I

• Imagine graph is weights and
strings, in which strings are cut to
scaled lengths

• Pick up weights one at a time

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

• Pick up A

• String becomes tight first at B
record: A→B

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

• Pick up B

• String becomes tight first at E
record: A→B→E
More Algorithms Shortest Path for Weighted Graphs 4



A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

• String now becomes tighter at D

• Why? After E comes F or H, each of
which is longer than D

• record: A→D

• We could have gotten to E via A

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

• Pick up D, followed by F

• But, G will be in “next round”

• so, record: A→D→G

A D G

B E H

C F I

5 2

1

1

2

3

4 1

1

3
3

6
4

• Eventually:

• record: A→D→G→H→I

• Forms a tree
More Algorithms Shortest Path for Weighted Graphs 5



1.5 Pseudocode Gist: Version 1

• Longish algorithm that uses cost in organizing priority
queue to choose nodes

• a bit expanded on “wordy gist” from before:

- pick the highest priority node (the smallest dist)

- tag the node, record previous, update cost:
PQ element: <node,accumulating cost>

- repeat until no more PQ or no more unvisted nodes
(note: tagging happens after extract from PQ)

• Visualization:

A
DB

C

1

2

3

3 E
F

Current
PQ

Entry

Current
Node

Adjacent
Nodes

PQ
Previous

Node

<A, 0> A [ ]
B [<B,1>] A
C [<B,1>,<C,2>] A

<B,1> B [<C,2>]
D [<C,2>,<D,4>] A

<C,2> C
E [<D,4>,<E,5>] C

<D,4> D
F [<E,5>,<F,8>] D

<E,5> E
F [<F,6>,<F,8>] E

<F,6> F
[<F,8>] F

4

1

More Algorithms Shortest Path for Weighted Graphs 6



1.6 Code Gist: Version 1

resetVerticies();
boolean done = false;
SeqStructure toDo = new Heap(edgeCount); // use min heap!
SeqStructure path = new QueueAsList();// should use stack
Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.setPrev(null);
toDo.put(new MinPQElement(originVertex,0));

while(!done && !toDo.isEmpty()) {
MinPQElement entry = (MinPQElement) toDo.get();
Vertex currentVertex = (Vertex) entry.getItem();

    if (!currentVertex.isVisited()) {
currentVertex.visit();
currentVertex.setCost(entry.getPriority());
currentVertex.setPrev(

((Vertex)entry.getItem()).getPrev());

if (currentVertex.equals(endVertex))
done = true;

else {
for (Iterator edges = currentVertex.

getEdgeIterator(); edges.hasNext(); ) {
Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();

if(!nextVertex.isVisited()) {
int nextCost = currentEdge.getWeight() +

currentVertex.getCost();
nextVertex.setCost(nextCost);
nextVertex.setPrev(currentVertex);
toDo.put(new

MinPQElement(nextVertex,nextCost));
}

} // end for
} // end else

    } // end if
} // end while

path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;
More Algorithms Shortest Path for Weighted Graphs 7



1.7 Pseudocode Gist: Version 2

• Data:

- s: start vertex

- c(i,j): cost from i to j

- dist(n): distance from s to n (initially )
- PQ to store neighboring nodes and choose the one

with min cost at each “layer”
(note: PQ size is edgeCount -> max # of adj nodes)

• Algorithm:
dist(s) <- 0
while (some vertices are unvisited)

v <- unmarked vertex with smallest dist
(get from the PQ)

tag v
for each node w adjacent to v

dist(w) = min(dist(w),dist(v)+c(v,w))
end for

end while

∞

More Algorithms Shortest Path for Weighted Graphs 8



1.8 Code Gist: Version 2

public SeqStructure dijkstra3(Object origin,Object end) {

resetVerticies(Integer.MAX_VALUE);
SeqStructure toDo = new Heap(edgeCount);
SeqStructure path = new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);

originVertex.setPrev(null);
originVertex.setCost(0);
toDo.put(new MinPQElement(originVertex,0));

while(!toDo.isEmpty()) {

MinPQElement entry = (MinPQElement) toDo.get();
Vertex currentVertex = (Vertex) entry.getItem();
currentVertex.visit();

for (Iterator edges = currentVertex.getEdgeIterator();
edges.hasNext(); ) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();
int nextCost =

currentEdge.getWeight() + currentVertex.getCost();

if (nextVertex.getCost() > nextCost ) {
nextVertex.setCost(nextCost);
nextVertex.setPrev(currentVertex);
toDo.put(new MinPQElement(nextVertex,nextCost));

}

}

}

path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

}

More Algorithms Shortest Path for Weighted Graphs 9



1.9 Proof Gist

• Induction on iterations of while loop

- each iteration moves one new node into lifted set

- do induction on set of nodes ordered in the sequence
in which they get put into the lifted set

• Induction:

- base case: path from origin to self is 0

- inductive hypothesis: assume that the shortest paths to
all nodes currently in the lifted set have been
computed correctly

- inductive hypothesis: the next node that gets lifted is
correct

• see Panels 16–19 at http://www.cs.cornell.edu/courses/
cs211/2002sp/Lectures/graphs-quad.pdf
More Algorithms Shortest Path for Weighted Graphs 10



1.10 Run-time Analysis for Adjacency List

• dominant operation of method is while loop (processing
unvisited nodes)

• time for processing each vertex:

- each vertex processed once

- all edges from a vertex might be processed

- so, for each node, add up time for each edge

- so, O(|V| + |E|) (see BFS time)

• PQ ops?

- worst case: each edge has a node to queue and
dequeue (see for loop and inner if)

- so, PQ has max length of |E|

- from heap: put is O(log n), get is O(log n)

- so, adding each edge’s contribution gives
O(|E| log |E|)

• total: O(|V| + |E| log |E|)

1.11 Adjacency Matrix

• see DS&A pg 577

• O(|V|^2 + |E| log |E|)
More Algorithms Shortest Path for Weighted Graphs 11



2. All Pairs Shortest Path

2.1 Problem

• given edge weighted graph

• for each pair of verticies find length of shortest path

2.2 One Solution

• run Dijkstra’s algorithm |V|+ times

• use each vertex as the origin

2.3 Floyd’s Algorithm

• use adjacency matrix

• see 16.4.2 in DS&A
More Algorithms All Pairs Shortest Path 12



3. Spanning Trees

3.1 Interesting Thing About Traversals

• BFS, DFS don’t repeat -> no cycles

• can backtrack to find a new unvisited node, but won’t
repeat it

• what does that look like?

• a rooted tree!

• ex) BFS = {A,B,D,E,G,H,F,I,C}

A D G

B E H

C F I
More Algorithms Spanning Trees 13



3.2 Spanning Tree

• effectively a subset of a graph:

- all nodes sames as in G

- tree edges must be graph edges (but nec all!)

- connected

- acyclic

• constructing?

- pick a starting edge

- add edges with unvisited dest nodes
More Algorithms Spanning Trees 14



3.3 Minimal Spanning Tree

• given: undirected, weighted graph

• weight of spanning tree = sum of tree edge weights

• minimum spanning tree:

- any spanning tree with smallest weight

- could have many such trees

3.4 Application

• see DS&SD pg 899

• find a cheap way to connect a bunch of nodes

- as in something travelling an entire graph

- plane needs to travel to a set of cities

- wants cheapest path to take that still hits all cities
More Algorithms Spanning Trees 15



3.5 Compare to SSSP

• SSSP: shortest path to a node
what’s cheapest way to get from A to Z using nodes
{A,…,Z}

• MST: smallest sum of weights connecting each node
what’s cheapest way to connect all nodes {A,…,Z}?

A

B C

44

1

A

B C

44

1

A

B C

44

1

weighted, undirected graph

SSSP for A→C: {A,C}
Tree: { {A,B}, {A,C} }

MST for graph
Tree: { {A,B}, {B,C} }
More Algorithms Spanning Trees 16



3.6 Prim’s Algorithm

• modify Dijsktra’s Algorithm:

- put edges in PQ

- associate edges with length of edge (don’t add costs)

- otherwise, algorithm is the same

3.7 Kruskal’s Algorithm

• add edges by increasing order of weights

• not allowed to add edges that form cycles

• see DS&A 16.5.2
More Algorithms Spanning Trees 17



4. Exercises

• Modify the heap code to use a minimum heap.

• Modify the heap code to provide a sorted string for
describing a priority queue.

• Prove by induction that Dijkstra’s algorithm is correct.

• Implement Prim’s algorithm.
More Algorithms Exercises 18


	CS211, Lecture 27
	More Algorithms
	Announcements:
	. course almost done: L28 is summary, evals
	. A6, A7 due soon
	. end of regular consulting: Fri, 5/1
	. special hours to finish regrades, pick up work will be announced on the website
	. consulting: forms in 303 Upson, starting 1PM today
	. final exam info: Final Exam (on website) (review info, prior exam posted soon)
	. final exam conflicts? see website; due Friday 5/2!

	Overview:
	. shortest path algorithm for weighted graph (Dijkstra’s algorithm)
	. all pairs source shortest path (Floyd’s algorithm)
	. minimum cost spanning trees (Prim’s algorithm, Kruskal’s algorithm)


	1. Shortest Path for Weighted Graphs
	1.1 Assumptions
	. could be directed or undirected
	. non-negative weights

	1.2 Dijkstra’s Algorithm
	. very famous
	. example of greedy algorithm
	. on-line demo: http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/ dijkstra/Dijkstra.shtml

	1.3 Wordy Gist: Based ON BFS
	. BFS: visit the nodes by “levels” or “layers”
	- put new (unvisited) nodes in Q
	- look at each node at each layer
	- process each node and repeat
	- don’t re-process already-visited nodes

	. New twist!
	- don’t treat all unvisited nodes as equals
	- want smallest accumulation of weights
	- so, need to sum weights along the way and maybe pick a different node than what’s in front of the Q


	1.4 Physical Gist
	. Want shortest path from A to I
	. Imagine graph is weights and strings, in which strings are cut to scaled lengths
	. Pick up weights one at a time
	. Pick up A
	. String becomes tight first at B record: AÆB
	. Pick up B
	. String becomes tight first at E record: AÆBÆE
	. String now becomes tighter at D
	. Why? After E comes F or H, each of which is longer than D
	. record: AÆD
	. We could have gotten to E via A
	. Pick up D, followed by F
	. But, G will be in “next round”
	. so, record: AÆDÆG
	. Eventually:
	. record: AÆDÆGÆHÆI
	. Forms a tree

	1.5 Pseudocode Gist: Version 1
	. Longish algorithm that uses cost in organizing priority queue to choose nodes
	. a bit expanded on “wordy gist” from before:
	- pick the highest priority node (the smallest dist)
	- tag the node, record previous, update cost: PQ element: <node,accumulating cost>
	- repeat until no more PQ or no more unvisted nodes (note: tagging happens after extract from PQ)

	. Visualization:

	1.6 Code Gist: Version 1
	1.7 Pseudocode Gist: Version 2
	. Data:
	- s: start vertex
	- c(i,j): cost from i to j
	- dist(n): distance from s to n (initially )
	- PQ to store neighboring nodes and choose the one with min cost at each “layer” (note: PQ size is edgeCount -> max # of adj nodes)

	. Algorithm:
	dist(s) <- 0
	while (some vertices are unvisited)
	v <- unmarked vertex with smallest dist
	(get from the PQ)
	tag v
	for each node w adjacent to v
	dist(w) = min(dist(w),dist(v)+c(v,w))
	end for
	end while


	1.8 Code Gist: Version 2
	1.9 Proof Gist
	. Induction on iterations of while loop
	- each iteration moves one new node into lifted set
	- do induction on set of nodes ordered in the sequence in which they get put into the lifted set

	. Induction:
	- base case: path from origin to self is 0
	- inductive hypothesis: assume that the shortest paths to all nodes currently in the lifted set have been computed correctly
	- inductive hypothesis: the next node that gets lifted is correct

	. see Panels 16-19 at http://www.cs.cornell.edu/courses/ cs211/2002sp/Lectures/graphs-quad.pdf

	1.10 Run-time Analysis for Adjacency List
	. dominant operation of method is while loop (processing unvisited nodes)
	. time for processing each vertex:
	- each vertex processed once
	- all edges from a vertex might be processed
	- so, for each node, add up time for each edge
	- so, O(|V| + |E|) (see BFS time)

	. PQ ops?
	- worst case: each edge has a node to queue and dequeue (see for loop and inner if)
	- so, PQ has max length of |E|
	- from heap: put is O(log n), get is O(log n)
	- so, adding each edge’s contribution gives O(|E| log |E|)

	. total: O(|V| + |E| log |E|)
	1.11 Adjacency Matrix
	. see DS&A pg 577
	. O(|V|^2 + |E| log |E|)



	2. All Pairs Shortest Path
	2.1 Problem
	. given edge weighted graph
	. for each pair of verticies find length of shortest path

	2.2 One Solution
	. run Dijkstra’s algorithm |V|+ times
	. use each vertex as the origin

	2.3 Floyd’s Algorithm
	. use adjacency matrix
	. see 16.4.2 in DS&A


	3. Spanning Trees
	3.1 Interesting Thing About Traversals
	. BFS, DFS don’t repeat -> no cycles
	. can backtrack to find a new unvisited node, but won’t repeat it
	. what does that look like?
	. a rooted tree!
	. ex) BFS = {A,B,D,E,G,H,F,I,C}

	3.2 Spanning Tree
	. effectively a subset of a graph:
	- all nodes sames as in G
	- tree edges must be graph edges (but nec all!)
	- connected
	- acyclic

	. constructing?
	- pick a starting edge
	- add edges with unvisited dest nodes


	3.3 Minimal Spanning Tree
	. given: undirected, weighted graph
	. weight of spanning tree = sum of tree edge weights
	. minimum spanning tree:
	- any spanning tree with smallest weight
	- could have many such trees

	3.4 Application
	. see DS&SD pg 899
	. find a cheap way to connect a bunch of nodes
	- as in something travelling an entire graph
	- plane needs to travel to a set of cities
	- wants cheapest path to take that still hits all cities



	3.5 Compare to SSSP
	. SSSP: shortest path to a node what’s cheapest way to get from A to Z using nodes {A,…,Z}
	. MST: smallest sum of weights connecting each node what’s cheapest way to connect all nodes {A,…,Z}?

	3.6 Prim’s Algorithm
	. modify Dijsktra’s Algorithm:
	- put edges in PQ
	- associate edges with length of edge (don’t add costs)
	- otherwise, algorithm is the same

	3.7 Kruskal’s Algorithm
	. add edges by increasing order of weights
	. not allowed to add edges that form cycles
	. see DS&A 16.5.2



	4. Exercises
	. Modify the heap code to use a minimum heap.
	. Modify the heap code to provide a sorted string for describing a priority queue.
	. Prove by induction that Dijkstra’s algorithm is correct.
	. Implement Prim’s algorithm.


