CS211, LECTURE 27 MORE ALGORITHMS

ANNOUNCEMENTS:

- course almost done: L28 is summary, evals
- A6, A7 due soon
- end of regular consulting: Fri, 5/1
- special hours to finish regrades, pick up work will be announced on the website
- consulting: forms in 303 Upson, starting 1PM today
- final exam info: Final Exam (on website) (review info, prior exam posted soon)
- final exam conflicts? see website; due Friday 5/2!

OVERVIEW:

- shortest path algorithm for weighted graph (Dijkstra's algorithm)
- all pairs source shortest path (Floyd's algorithm)
- minimum cost spanning trees (Prim's algorithm, Kruskal's algorithm)

1. Shortest Path for Weighted Graphs

1.1 Assumptions

- could be directed or undirected
- non-negative weights

1.2 Dijkstra's Algorithm

- very famous
- example of greedy algorithm
- on-line demo: http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/ dijkstra/Dijkstra.shtml

1.3 Wordy Gist: Based ON BFS

- BFS: visit the nodes by "levels" or "layers"
 - put new (unvisited) nodes in Q
 - look at each node at each layer
 - process each node and repeat
 - don't re-process already-visited nodes
- New twist!
 - don't treat all unvisited nodes as equals
 - want smallest accumulation of weights
 - so, need to sum weights along the way and maybe pick a different node than what's in front of the Q

1.4 Physical Gist

- Want shortest path from A to I
- Imagine graph is weights and strings, in which strings are cut to scaled lengths
- Pick up weights one at a time

- Pick up A
- String becomes tight *first* at B record: A→B

- Pick up B
- String becomes tight *first* at E record: A→B→E

- String now becomes tighter at D
- Why? After E comes F or H, each of which is longer than D
- record: $A \rightarrow D$
- We could have gotten to E via A
- Pick up D, followed by F
- But, G will be in "next round"
- so, record: $A \rightarrow D \rightarrow G$

- Eventually:
- record: $A \rightarrow D \rightarrow G \rightarrow H \rightarrow I$
- Forms a tree

1.5 Pseudocode Gist: Version 1

- Longish algorithm that uses cost in organizing priority queue to choose nodes
- a bit expanded on "wordy gist" from before:
 - pick the highest priority node (the smallest dist)
 - tag the node, record previous, update cost:
 PQ element: <node,accumulating cost>
 - repeat until no more PQ or no more unvisted nodes (note: tagging happens *after* extract from PQ)
- Visualization:

	Current PQ Entry	Current Node	Adjacent Nodes	PQ	Previous Node
3	<a, 0=""></a,>	А		[]	
$1 \mathbb{B} \xrightarrow{3} \mathbb{D} ^{4}$			В	[<b,1>]</b,1>	А
∧ F			С	[<b,1>,<c,2>]</c,2></b,1>	А
	<b,1></b,1>	В		[<c,2>]</c,2>	
2 [−] [−] [−] [−]			D	[<c,2>,<d,4>]</d,4></c,2>	А
	<c,2></c,2>	С			
			E	[<d,4>,<e,5>]</e,5></d,4>	С
	<d,4></d,4>	D			
			F	[<e,5>,<f,8>]</f,8></e,5>	D
	<e,5></e,5>	Е			
	2		F	[<f,6>,<f,8>]</f,8></f,6>	Е
	<f,6></f,6>	F			
	·			[<f,8>]</f,8>	F

1.6 Code Gist: Version 1

```
resetVerticies();
boolean done = false;
SeqStructure toDo = new Heap(edgeCount); // use min heap!
SeqStructure path = new QueueAsList();// should use stack
Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.setPrev(null);
toDo.put(new MinPQElement(originVertex,0));
   while(!done && !toDo.isEmpty()) {
       MinPQElement entry = (MinPQElement) toDo.get();
       Vertex currentVertex = (Vertex) entry.getItem();
        if (!currentVertex.isVisited()) {
           currentVertex.visit();
           currentVertex.setCost(entry.getPriority());
           currentVertex.setPrev(
                           ((Vertex)entry.getItem()).getPrev());
           if (currentVertex.equals(endVertex))
               done = true;
           else {
               for (Iterator edges = currentVertex.
                          getEdgeIterator(); edges.hasNext(); ) {
                   Edge currentEdge = (Edge) edges.next();
                   Vertex nextVertex = currentEdge.getDest();
                   if(!nextVertex.isVisited()) {
                       int nextCost = currentEdge.getWeight() +
                                      currentVertex.getCost();
                      nextVertex.setCost(nextCost);
                      nextVertex.setPrev(currentVertex);
                       toDo.put(new
                              MinPQElement(nextVertex,nextCost));
               } // end for
           } // end else
        } // end if
    } // end while
path.put(endVertex);
while(endVertex.hasPrev()) {
   endVertex = endVertex.getPrev();
   path.put(endVertex);
}
return path;
```

More Algorithms

Shortest Path for Weighted Graphs

1.7 Pseudocode Gist: Version 2

- Data:
 - s: start vertex
 - c(i,j): cost from i to j
 - dist(n): distance from s to n (initially ∞)
 - PQ to store neighboring nodes and choose the one with min cost at each "layer"
 (note: PQ size is edgeCount -> max # of adj nodes)
- Algorithm:

```
dist(s) <- 0
while (some vertices are unvisited)
  v <- unmarked vertex with smallest dist
      (get from the PQ)
  tag v
  for each node w adjacent to v
      dist(w) = min(dist(w),dist(v)+c(v,w))
  end for
end while</pre>
```

1.8 Code Gist: Version 2

```
public SeqStructure dijkstra3(Object origin,Object end) {
   resetVerticies(Integer.MAX VALUE);
   SeqStructure toDo = new Heap(edgeCount);
   SeqStructure path = new QueueAsList();
   Vertex originVertex = (Vertex)verticies.get(origin);
   Vertex endVertex = (Vertex)verticies.get(end);
   originVertex.setPrev(null);
   originVertex.setCost(0);
   toDo.put(new MinPQElement(originVertex,0));
   while(!toDo.isEmpty()) {
       MinPQElement entry = (MinPQElement) toDo.get();
       Vertex currentVertex = (Vertex) entry.getItem();
       currentVertex.visit();
       for (Iterator edges = currentVertex.getEdgeIterator();
                                              edges.hasNext(); ) {
           Edge currentEdge = (Edge) edges.next();
           Vertex nextVertex = currentEdge.getDest();
           int nextCost =
               currentEdge.getWeight() + currentVertex.getCost();
           if (nextVertex.getCost() > nextCost ) {
               nextVertex.setCost(nextCost);
               nextVertex.setPrev(currentVertex);
               toDo.put(new MinPQElement(nextVertex,nextCost));
           }
       }
   }
   path.put(endVertex);
   while(endVertex.hasPrev()) {
       endVertex = endVertex.getPrev();
       path.put(endVertex);
    }
   return path;
}
```

More Algorithms

Shortest Path for Weighted Graphs

1.9 Proof Gist

- Induction on iterations of while loop
 - each iteration moves one new node into lifted set
 - do induction on set of nodes ordered in the sequence in which they get put into the lifted set
- Induction:
 - base case: path from origin to self is 0
 - inductive hypothesis: assume that the shortest paths to all nodes currently in the lifted set have been computed correctly
 - inductive hypothesis: the next node that gets lifted is correct
- see Panels 16–19 at http://www.cs.cornell.edu/courses/ cs211/2002sp/Lectures/graphs-quad.pdf

1.10 Run-time Analysis for Adjacency List

- dominant operation of method is while loop (processing unvisited nodes)
- time for processing each vertex:
 - each vertex processed once
 - all edges from a vertex might be processed
 - so, for each node, add up time for each edge
 - so, O(|V| + |E|) (see BFS time)
- PQ ops?
 - worst case: each edge has a node to queue and dequeue (see for loop and inner if)
 - so, PQ has max length of |E|
 - from heap: put is O(log n), get is O(log n)
 - so, adding each edge's contribution gives
 O(|E| log |E|)
- total: $O(|V| + |E| \log |E|)$

1.11 Adjacency Matrix

- see DS&A pg 577
- $O(|V|^2 + |E| \log |E|)$

2. All Pairs Shortest Path

2.1 Problem

- given edge weighted graph
- for each pair of verticies find length of shortest path

2.2 One Solution

- run Dijkstra's algorithm |V|+ times
- use each vertex as the origin

2.3 Floyd's Algorithm

- use adjacency matrix
- see 16.4.2 in DS&A

3. Spanning Trees

3.1 Interesting Thing About Traversals

- BFS, DFS don't repeat -> no cycles
- can backtrack to find a new unvisited node, but won't repeat it
- what does that look like?
- a rooted tree!
- ex) BFS = {A,B,D,E,G,H,F,I,C}

3.2 Spanning Tree

- effectively a subset of a graph:
 - all nodes sames as in G
 - tree edges must be graph edges (but nec all!)
 - connected
 - acyclic
- constructing?
 - pick a starting edge
 - add edges with unvisited dest nodes

3.3 Minimal Spanning Tree

- given: undirected, weighted graph
- weight of spanning tree = sum of tree edge weights
- *minimum spanning tree*:
 - any spanning tree with smallest weight
 - could have many such trees

3.4 Application

- see DS&SD pg 899
- find a cheap way to connect a bunch of nodes
 - as in something travelling an entire graph
 - plane needs to travel to a set of cities
 - wants cheapest path to take that still hits all cities

3.5 Compare to SSSP

- SSSP: shortest path to a node what's cheapest way to get from A to Z using nodes {A,...,Z}
- MST: smallest sum of weights connecting each node what's cheapest way to connect all nodes {A,...,Z}?

3.6 Prim's Algorithm

- modify Dijsktra's Algorithm:
 - put edges in PQ
 - associate edges with length of edge (don't add costs)
 - otherwise, algorithm is the same

3.7 Kruskal's Algorithm

- add edges by increasing order of weights
- not allowed to add edges that form cycles
- see DS&A 16.5.2

4. Exercises

- Modify the heap code to use a minimum heap.
- Modify the heap code to provide a sorted string for describing a priority queue.
- Prove by induction that Dijkstra's algorithm is correct.
- Implement Prim's algorithm.