
CS211, LECTURE 26
MORE GRAPHS

ANNOUNCEMENTS:

• L25 code fixed!

• makeup assignment (“A7”) info

• grades

OVERVIEW:

• motivation for algorithms

• general search

• DFS revisted

• BFS revisted

• shortest path algorithm for unweighted graph

1. Motivation

1.1 Paths

• find ways to reach/find/collect/organize information
from network of nodes

• focus of a lot of research!

1.2 Reachability

• is there a path from a given node to another node?

• ex) find the solved state of N-Puzzle from scrambled
state

1.3 Minimal Path

• find the shortest path from a node to another

• find the shortest path from every node to another

• use weights to find min/max distances

1.4 Cycles

• ex) Traveling Salesman problem

• find the smallest length cucle that passes through all
nodes

• no one knows if there is an efficient algorithm for this
(NP/NP-complete problems)
2. Search

• kind of handy that we have explicit graph

• why?

- verticies created ahead of time
- stored in hash table
- so, only need to look up a node…

public boolean search(Object o) {
if (verticies.get(o)==null)

return false;
return true;

}

3. Traversal

3.1 Traversal

• like search for node, but now search for everything

• visit nodes

• also called walk

• see lists, trees, …

3.2 Why?

• want to find things

• want to way to something

• want to process everything

3.3 Types

• DFS (Digraph.java)

• BFS (Digraph.java)

• topological sort

• random

• more?

3.4 Applications

• test for cycles (DS&A)

• connectedness (DS&A)
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3.5 DFS

• depth-first search

• process:

- start with origin
- visits a neighbor
- visits neighbor of neighbor and so on…
- stops when can’t find unvisited neighbor
- backs up to previous node and searches for new

unvisited neighbor and so on…

• results in visiting all the nodes in a connected graph

• the DFS path never repeats a node

• show/print path as { v1, v2, … vn }:

- left side (v1) is origin
- each visited node inserted to right

public SeqStructure getDFS(Object origin) {

resetVerticies();
SeqStructure toDo = new StackAsList();
SeqStructure path = new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
originVertex.visit();
toDo.put(originVertex);
path.put(originVertex);

while(!toDo.isEmpty()) {
Vertex currentVertex = (Vertex)toDo.get();
Iterator edges = currentVertex.getEdgeIterator();
boolean found = false;
Vertex nextVertex = null;
while (!found && edges.hasNext()) {

Edge currentEdge = (Edge) edges.next();
Vertex trialVertex = currentEdge.getDest();
if(!trialVertex.isVisited()) {

found = true;
nextVertex = trialVertex;

}
}

if (nextVertex != null) {
toDo.put(currentVertex);
nextVertex.visit();
toDo.put(nextVertex);
path.put(nextVertex);

}
}
return path;

}

3.6 BFS

• breadth-first search (called level-order in trees)

• process:

- visit origin (record this node)
- visit each of origin’s neighbors (record each node in

order visited)
- visit neighbors of each neighbor (record those nodes)

and so forth

• show/print path as { v1, v2, … vn }:

- left side (v1) is origin
- each visited “level” is inserted to right of previous

node
- so might wish to think as { {level 1}, {level 2}, … }

public SeqStructure getBFS(Object origin) {

resetVerticies();
SeqStructure toDo = new QueueAsList();
SeqStructure path = new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
originVertex.visit();
toDo.put(originVertex);
path.put(originVertex);

while(!toDo.isEmpty()) {
    Vertex currentVertex = (Vertex)toDo.get();

    for (Iterator edges =
currentVertex.getEdgeIterator();
edges.hasNext(); ) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();

if(!nextVertex.isVisited()) {
nextVertex.visit();
toDo.put(nextVertex);
path.put(nextVertex);

}
}

}

return path;

}
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3.7 Example

• see TestDigraph.java

• contains more examples

Digraph g = new Digraph();
g.addVertex("A");
g.addVertex("B");
g.addVertex("C");
g.addVertex("D");
g.addVertex("E");
g.addVertex("F");
g.addVertex("G");
g.addEdge("A","B");
g.addEdge("A","C");
g.addEdge("B","D");
g.addEdge("B","E");
g.addEdge("C","F");
g.addEdge("C","G");

System.out.println(g.getBFS("A"));
System.out.println(g.getDFS("A"));

/*
BFS: [A B C D E F G]
DFS: [A B D E C F G]

*/

4. Shortest Path Algorithms

4.1 Assumptions

• edge-weighted graph (unitary or more)

• weight is a cost of using an edge

• graphs may be directed or undirected

• non-negative edge weights!

4.2 Why?

• want to find best/cheapest/least effort between points

• travelling is classic example

4.3 Terms

• weighted path length = sum of weights on path

• unweighted path length = sum of paths (weights = 1)
4.4 SSSP

• to find shortest path from A to B, need to find shortest
path from A to all other nodes

- why? another node might provide a better path
- see DS&A 16.4.1: basically, knowing all the path

lengths might mean you can find a shorter route

• this problem called single-source shortest path problem

5. SSSP for Unweighted Graphs

5.1 The Gist

• based on BFS

• all traverse trees, keep track of increasing path lengths
to a particular node

• algorithm finds only 1 path if multiple paths are smallest
and have same value

• will need to modify classes again

- need to find all paths to end node
- need to keep track of length to current node

(so can have length values after traversal)
- so, need to keep track of previous node
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5.2 Process for SSSP

• finding shortest path from A to B means counting edges

• smallest number of edges gives shortest path

• since starting at A, start counting @ A:

• try to find final node, so count edges while looking:

• which will get the smallest node cost if check when
reach final node and backtrack

5.3 Path Cost

• for path to node v, distance to v is Dv

• for v → w, Dw = Dv + 1

• helpful convention: default node cost for SSSP:
Dw =

• we’re not really using the Dw convention, though many
implementations do (we have visited, which is our
way of tagging visited nodes)
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5.4 Algorithm (BFS for Destination)

• start with origin

• put origin in Q

• not done, so take first node from Q

• find edges from node

• for each node, if it’s not already been visited

- tag it, set cost, set prev node, put in Q
- if the node is dest, stop processing!

5.5 Example: Part 1–Build Q

origin: A; end: I
get A: Q = [A]
get A: Q = [ ]

process (AD),(AE),(AB) (nodes D,E,B)
for each node, put in Q [D,E,B], tag, set cost (1),
set prev (A), check if dest (no for all)

get D: Q = [E,B]
process (DG) (node G)
tag G, put in Q [E,B,G], set cost (G=2),
set prev (D), check if dest (no)

get E: [B,G]
process (EH), (EF) (nodes H,F)
tag nodes, put in Q [B,G,H,F], set costs (H=F=2)
& prev (E), check if dest (no for all)

get B: [G,H,F]
nothing new -- no processing

get G: [H,F]
process (GH)
nothing new (H already visited)

get H: [
tag I, put in Q [H,F,I], set cost (3), set prev (H)
check if dest -- yes! STOP!

A D G

B E H

C F I
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5.6 Example: Part 2–Build Stack

put last vertex (end) into Stack: [I]
set last vertex to prev of last index: H
put last vertex into Stack: [H,I]
set last vertex to prev of last index: E
put last vertex into Stack: [E,H,I]
set last vertex to prev of last index: A
put last vertex into Stack: [A,E,H,I]
no more prev (prev is null)
return Stack, which contains shortest path

5.7 Code

public SeqStructure unweightedShortestPath(Object origin,
Object end) {

resetVerticies();
boolean done = false;
SeqStructure toDo = new QueueAsList();
SeqStructure path = new StackAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.visit();
toDo.put(originVertex);

while(!done && !toDo.isEmpty()) {
Vertex currentVertex = (Vertex)toDo.get();

for (Iterator edges=currentVertex.getEdgeIterator();
!done && edges.hasNext(); ) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();

if(!nextVertex.isVisited()) {
nextVertex.visit();
nextVertex.setCost(1+

currentVertex.getCost());
nextVertex.setPrev(currentVertex);
toDo.put(nextVertex);

}

if (nextVertex.equals(endVertex))
done = true;

} // end for

} // end while

path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

}

6. Exercises

• Use recursion to rewrite (and simplify) the DFS code.
You might need a helper method.

• Write a program that finds all DFS/BFS paths in a
graph. Is this problem related to an implicit graph search

• Rewrite the shortest path algorithm such that it uses the
convention of “infinite” costs as the check for stopping
instead of tagging of nodes.

• Try to figure out an algorithm for finding the shortest
path when there are edge weights.
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