
CS211, LECTURE 26
MORE GRAPHS

ANNOUNCEMENTS:

• L25 code fixed!

• makeup assignment (“A7”) info

• grades

OVERVIEW:

• motivation for algorithms

• general search

• DFS revisted

• BFS revisted

• shortest path algorithm for unweighted graph

1. Motivation

1.1 Paths

• find ways to reach/find/collect/organize information
from network of nodes

• focus of a lot of research!

1.2 Reachability

• is there a path from a given node to another node?

• ex) find the solved state of N-Puzzle from scrambled
state

1.3 Minimal Path

• find the shortest path from a node to another

• find the shortest path from every node to another

• use weights to find min/max distances

1.4 Cycles

• ex) Traveling Salesman problem

• find the smallest length cucle that passes through all
nodes

• no one knows if there is an efficient algorithm for this
(NP/NP-complete problems)
2. Search

• kind of handy that we have explicit graph

• why?

- verticies created ahead of time
- stored in hash table
- so, only need to look up a node…

public boolean search(Object o) {
if (verticies.get(o)==null)

return false;
return true;

}

3. Traversal

3.1 Traversal

• like search for node, but now search for everything

• visit nodes

• also called walk

• see lists, trees, …

3.2 Why?

• want to find things

• want to way to something

• want to process everything

3.3 Types

• DFS (Digraph.java)

• BFS (Digraph.java)

• topological sort

• random

• more?

3.4 Applications

• test for cycles (DS&A)

• connectedness (DS&A)
1
 2
3
 4

3.5 DFS

• depth-first search

• process:

- start with origin
- visits a neighbor
- visits neighbor of neighbor and so on…
- stops when can’t find unvisited neighbor
- backs up to previous node and searches for new

unvisited neighbor and so on…

• results in visiting all the nodes in a connected graph

• the DFS path never repeats a node

• show/print path as { v1, v2, … vn }:

- left side (v1) is origin
- each visited node inserted to right

public SeqStructure getDFS(Object origin) {

resetVerticies();
SeqStructure toDo = new StackAsList();
SeqStructure path = new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
originVertex.visit();
toDo.put(originVertex);
path.put(originVertex);

while(!toDo.isEmpty()) {
Vertex currentVertex = (Vertex)toDo.get();
Iterator edges = currentVertex.getEdgeIterator();
boolean found = false;
Vertex nextVertex = null;
while (!found && edges.hasNext()) {

Edge currentEdge = (Edge) edges.next();
Vertex trialVertex = currentEdge.getDest();
if(!trialVertex.isVisited()) {

found = true;
nextVertex = trialVertex;

}
}

if (nextVertex != null) {
toDo.put(currentVertex);
nextVertex.visit();
toDo.put(nextVertex);
path.put(nextVertex);

}
}
return path;

}

3.6 BFS

• breadth-first search (called level-order in trees)

• process:

- visit origin (record this node)
- visit each of origin’s neighbors (record each node in

order visited)
- visit neighbors of each neighbor (record those nodes)

and so forth

• show/print path as { v1, v2, … vn }:

- left side (v1) is origin
- each visited “level” is inserted to right of previous

node
- so might wish to think as { {level 1}, {level 2}, … }

public SeqStructure getBFS(Object origin) {

resetVerticies();
SeqStructure toDo = new QueueAsList();
SeqStructure path = new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
originVertex.visit();
toDo.put(originVertex);
path.put(originVertex);

while(!toDo.isEmpty()) {
 Vertex currentVertex = (Vertex)toDo.get();

 for (Iterator edges =
currentVertex.getEdgeIterator();
edges.hasNext();) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();

if(!nextVertex.isVisited()) {
nextVertex.visit();
toDo.put(nextVertex);
path.put(nextVertex);

}
}

}

return path;

}

5
 6
7
 8

3.7 Example

• see TestDigraph.java

• contains more examples

Digraph g = new Digraph();
g.addVertex("A");
g.addVertex("B");
g.addVertex("C");
g.addVertex("D");
g.addVertex("E");
g.addVertex("F");
g.addVertex("G");
g.addEdge("A","B");
g.addEdge("A","C");
g.addEdge("B","D");
g.addEdge("B","E");
g.addEdge("C","F");
g.addEdge("C","G");

System.out.println(g.getBFS("A"));
System.out.println(g.getDFS("A"));

/*
BFS: [A B C D E F G]
DFS: [A B D E C F G]

*/

4. Shortest Path Algorithms

4.1 Assumptions

• edge-weighted graph (unitary or more)

• weight is a cost of using an edge

• graphs may be directed or undirected

• non-negative edge weights!

4.2 Why?

• want to find best/cheapest/least effort between points

• travelling is classic example

4.3 Terms

• weighted path length = sum of weights on path

• unweighted path length = sum of paths (weights = 1)
4.4 SSSP

• to find shortest path from A to B, need to find shortest
path from A to all other nodes

- why? another node might provide a better path
- see DS&A 16.4.1: basically, knowing all the path

lengths might mean you can find a shorter route

• this problem called single-source shortest path problem

5. SSSP for Unweighted Graphs

5.1 The Gist

• based on BFS

• all traverse trees, keep track of increasing path lengths
to a particular node

• algorithm finds only 1 path if multiple paths are smallest
and have same value

• will need to modify classes again

- need to find all paths to end node
- need to keep track of length to current node

(so can have length values after traversal)
- so, need to keep track of previous node
9
 10
11
 12

5.2 Process for SSSP

• finding shortest path from A to B means counting edges

• smallest number of edges gives shortest path

• since starting at A, start counting @ A:

• try to find final node, so count edges while looking:

• which will get the smallest node cost if check when
reach final node and backtrack

5.3 Path Cost

• for path to node v, distance to v is Dv

• for v → w, Dw = Dv + 1

• helpful convention: default node cost for SSSP:
Dw =

• we’re not really using the Dw convention, though many
implementations do (we have visited, which is our
way of tagging visited nodes)

A
C

B

D

E
start
@ A

0

A
C

B

D

E
start
@ A

0
1

1

∞

5.4 Algorithm (BFS for Destination)

• start with origin

• put origin in Q

• not done, so take first node from Q

• find edges from node

• for each node, if it’s not already been visited

- tag it, set cost, set prev node, put in Q
- if the node is dest, stop processing!

5.5 Example: Part 1–Build Q

origin: A; end: I
get A: Q = [A]
get A: Q = []

process (AD),(AE),(AB) (nodes D,E,B)
for each node, put in Q [D,E,B], tag, set cost (1),
set prev (A), check if dest (no for all)

get D: Q = [E,B]
process (DG) (node G)
tag G, put in Q [E,B,G], set cost (G=2),
set prev (D), check if dest (no)

get E: [B,G]
process (EH), (EF) (nodes H,F)
tag nodes, put in Q [B,G,H,F], set costs (H=F=2)
& prev (E), check if dest (no for all)

get B: [G,H,F]
nothing new -- no processing

get G: [H,F]
process (GH)
nothing new (H already visited)

get H: [
tag I, put in Q [H,F,I], set cost (3), set prev (H)
check if dest -- yes! STOP!

A D G

B E H

C F I
13
 14
15
 16

5.6 Example: Part 2–Build Stack

put last vertex (end) into Stack: [I]
set last vertex to prev of last index: H
put last vertex into Stack: [H,I]
set last vertex to prev of last index: E
put last vertex into Stack: [E,H,I]
set last vertex to prev of last index: A
put last vertex into Stack: [A,E,H,I]
no more prev (prev is null)
return Stack, which contains shortest path

5.7 Code

public SeqStructure unweightedShortestPath(Object origin,
Object end) {

resetVerticies();
boolean done = false;
SeqStructure toDo = new QueueAsList();
SeqStructure path = new StackAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.visit();
toDo.put(originVertex);

while(!done && !toDo.isEmpty()) {
Vertex currentVertex = (Vertex)toDo.get();

for (Iterator edges=currentVertex.getEdgeIterator();
!done && edges.hasNext();) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();

if(!nextVertex.isVisited()) {
nextVertex.visit();
nextVertex.setCost(1+

currentVertex.getCost());
nextVertex.setPrev(currentVertex);
toDo.put(nextVertex);

}

if (nextVertex.equals(endVertex))
done = true;

} // end for

} // end while

path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

}

6. Exercises

• Use recursion to rewrite (and simplify) the DFS code.
You might need a helper method.

• Write a program that finds all DFS/BFS paths in a
graph. Is this problem related to an implicit graph search

• Rewrite the shortest path algorithm such that it uses the
convention of “infinite” costs as the check for stopping
instead of tagging of nodes.

• Try to figure out an algorithm for finding the shortest
path when there are edge weights.
17
 18
19

	CS211, Lecture 26
	More Graphs
	Announcements:
	Overview:
	1. Motivation
	1.1 Paths
	1.2 Reachability
	1.3 Minimal Path
	1.4 Cycles

	2. Search
	3. Traversal
	3.1 Traversal
	3.2 Why?
	3.3 Types
	3.4 Applications
	3.5 DFS
	3.6 BFS
	3.7 Example

	4. Shortest Path Algorithms
	4.1 Assumptions
	4.2 Why?
	4.3 Terms
	4.4 SSSP

	5. SSSP for Unweighted Graphs
	5.1 The Gist
	5.2 Process for SSSP
	5.3 Path Cost
	5.4 Algorithm (BFS for Destination)
	5.5 Example: Part 1-Build Q
	5.6 Example: Part 2-Build Stack
	5.7 Code

	6. Exercises

