
CS211, LECTURE 25
MORE GRAPHS

ANNOUNCEMENTS:

• office hours today (Tues): 1-3pm

• A6 due Weds 4/30

• makeup assignment (“A7”) info

• bonus points on prelim?

OVERVIEW:

• implicit graph reminder

• explicit graphs

• adjacency matrix and list representations

• design, algorithms and implentation for basic classes

• building graphs

1. Motivation

1.1 Up To Today:

• graph theory, which leads to …

• implicit graphs and help with homework, then…

• explicit graphs to help build generic graph classes…

• build graphs

1.2 What To Do With Graphs?

• next two lectures…

• generalize traversal: BFS, DFS

• use traversal for searching

• sorting

• shortest path to something

• more…?
2. Representations

2.1 Implicit

• rules/model creates a network of nodes/edges

• ex) puzzle moves

- each move makes a new puzzle
- treat each state as a node
- so, rules implicit define a graph

• common for games!

2.2 Explicit

• define all nodes V and edges E ahead of time

• want system to represent edges

• why? it’s the “biggest problem”:

- G = (V,E) and each edge e in E is a pair (v1,v2)
- most edges possible? |V|^2

(form pairs from all nodes)
- most sets of edges possible? 2^(|V|^2)

• so, use container to represent edges

- adjacency matrix
- adjacency list
1
 2
3
 4

2.3 Adjacency Matrix

• adjacency matrix

• terms
: node i; node j

: edge between nodes i () and j ()

belongs to set of edges

: weight of edge between nodes i and j

• : the matrix (rectangular 2x2 array) as rows (i) and

cols (j); coords correspond to nodes i and j

2.4 Adjacency List

• adjacency list: linked list of nodes adjacent to a node

• need lists

2.5 graph types to develop:

• undirected

• directed

• weighted

Aij

wij vi v j,{ } E∈

0 otherwise



=

vi v j

vi v j,{ } E∈ vi v j

E

wij

Aij

V

2.6 Undirected 2.7 Directed

1 1 1
1 1
1 1 1
1 1

i
j

A B C D
A
B
C
D

Aij

1 vi v j,{ } E∈

0 otherwise



=

A
B
C
D

B C D

A C

A C

A B D

Use array A of lists:
Ai stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai

B
C

D

A

1 1 1 1

1 1
1

i
j

A B C D
A
B
C
D

Aij

1 vi v j,() E∈

0 otherwise



=

A
B
C
D

A B D

C

B D

Use array A of lists:
Ai stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai

C

B
C

D

A

5
 6
7
 8

2.8 Weighted

• assuming also weighted

• : cost or weight of edge from node i to node j

• sometimes use sentinel to represent “no edge”
between i and j

2.9 Choice of AM or AL?

• Adjacency Matrix

- uses space

- can answer “is there an edge from i to j?” in
time

- enumerating all nodes adjacent to i: (find all
nodes j in row for i)

- could be sparse because of wasted space (0s)
- better for dense graphs (lots of edges)!

• Adjacency List

- uses O(|V|+|E|) space (|V| for i nodes, |E| for j nodes
emanating from each i node)

- can answer question “is there an edge from i to j?” in
 time

- enumerating all nodes adjacent to i: per adjacent
node in linked list

- better for sparse graphs (few edges)!

wij

∞

1 5 2 3

4 6
7

i
j

A B C D
A
B
C
D

Aij

wij vi v j,() E∈

0 otherwise



=

A
B
C
D

Use array A of lists: include weights
List for i contains j,w for edge (i,j)

A 1 B 5 C 2

B 4 D 6

C 7

D 3

B
C

D

A

5

1

4

2

3

6
7

O V
2()

O 1()

O V()

O E()

O 1()
3. Implementation

3.1 Implicit

• can use containers to store node and edge info

• a bit too problem specific, though effective

3.2 Explicit

• Adjacency Matrix - left as exercise

• Adjacency List

- using linked list to allow for flexible building
- kind of gives implicit building by allowing for node/

edge creation “on the fly”

• focus on digragh, but could be weighted

- Sections 3, 4, 5, 6
- many methods left out – will see for graph problems

4. Verticies

4.1 Fields

• label: we like to have names, numbers, …

• edges: collection of all emanating edges from the
current vertex

• visited: need later to tag vertex for searching…

• sometimes includes cost (cost to get here from
somewhere)

4.2 Constructor

• set label

• create edges adjacency list (AL)

4.3 Methods

• addEdge: add to AL

• equals: need for path checking

• more?
9
 10
11
 12

import java.util.*;

public class Vertex {

private Object label;
private LinkedList edges; // adjacent edges
private boolean visited; // tag

public Vertex(Object o) {
label = o;
edges = new LinkedList();

}

public void addEdge(Edge e, int weight) {
Vertex source = this;
Vertex dest = e.getDest();
edges.add(new Edge(source,dest,weight));

}

public void addEdge(Edge e) {
addEdge(e,0);

}

public boolean equals(Vertex other) {
return label.equals(((Vertex)other).label);

}

public String toString() {
return label.toString();

}

public Collection getEdges() { return edges; }

} // Class Vertex

5. Edges

5.1 Fields

• source: s->d, the node from which edge emanates

• dest: actually, all you need is this since Vertex keeps
track of adjacent edges of source

• weight: could make double (sometimes called cost)

5.2 Constructors

• build edge from s->d

• can default to weight of 0 to handle unweighted graphs

5.3 Methods

• equals and compareTo:

- many algorithms want to know shortest path
- need to compare costs of going in different directions

• toString: "source-weight->dest"

• more?
public class Edge implements Comparable {

private Vertex source; // s (s->d)
private Vertex dest; // d
private int weight; // also called cost

public Edge(Vertex source, Vertex dest, int weight) {
this.source=source;
this.dest=dest;
this.weight=weight;

}

public Edge(Vertex source, Vertex dest) {
this(source,dest,0);

}

// getters and setters not shown

public boolean equals(Object other) {
Edge e = (Edge) other;
return weight == e.weight;

}

public int compareTo(Object other) {
Edge e = (Edge) other;
return (int) (weight-e.weight);

}

// Stringify as (d,--w->,s):
public String toString() {

return "("+source+"-"+weight+"->"+dest+")";
}

} // Class Edge

6. Directed Graphs

6.1 Fields

• verticies dictionary:

- key-val pairs of (VertexName,Vertex)
- each Vertex points to its adjacency list!

• edgeCount

6.2 Constructors

• set verticies to LinkedHashMap

• maintains order of nodes in order created

• nodes must be created before edges this way!

6.3 Methods

• use vertex names/labels!

• addVertex: put Vertex in Map: (name, Vertex)

• addEdge: connect s and d nodes (they must exist!)
13
 14
15
 16

import java.util.*;
public class Digraph {

private Map verticies; // dictionary of nodes
private int edgeCount; // number of edges

public Digraph() {
verticies = new LinkedHashMap();

}

// Add vertex to map
public void addVertex(Object name) {

verticies.put(name, new Vertex(name));
}

// Adds edge (source and dest node must exist!):
public void addEdge(Object s, Object d, int weight) {

// Key is NAME of Vertex
// Val is THE Vertex
// So, get keys of s and d and use them to
// retrieve their vals (their Verticies):
Vertex source = (Vertex)verticies.get(s);
Vertex dest = (Vertex)verticies.get(d);

// Create edge between source and dest:
s.addEdge(new Edge(source,dest,weight));
edgeCount++;

}

public void addEdge(Object source, Object dest) {
addEdge(source,dest,0);

}

// Stringify: return edges with
// their adjacency lists:
public String toString() {

String s = "";

Iterator it=verticies.keySet().iterator();

while(it.hasNext()) {

// current node label:
Object key = it.next();

// current Vertex:
Vertex val = (Vertex) verticies.get(key);

// build string for current vertex in Map:
s += "[" + val + "]" + "-->";
s += val.getEdges();
s += "\n";

}

return s;

} // Method toString

} // Class Digraph
7. Demonstration

7.1 Code

public class TestDigraph {

public static void main(String[] args) {

Digraph g = new Digraph();
g.addVertex("A");
g.addVertex("B");
g.addVertex("C");
g.addEdge("A","B");
g.addEdge("A","C");
g.addEdge("B","C");
System.out.println(g);

}
}

7.2 Output

[A]-->[(A-0->B), (A-0->C)]
[B]-->[(B-0->C)]
[C]-->[]

8. Exercises

• Demonstrate why we use edges for explicit
representations of graphs.

• Develop Vertex, Edge, Digraph, and
TestDigraph classes for the adjacency matrix
approach. You should develop methods to handle I/O in
reading in a grid of adjacencies to help build a graph.

• Remove the source node field from class Edge and
modify the remaining classes as necessary. This design
is a bit more common than the examples given to you.

• Rewrite Digraph’s addEdge such that it does not
assume that the nodes exist. You may either throw an
exception or perhaps create more nodes….

• Graphical graph: This was once a final project long
ago…develop a GUI tool that draws a graph that a user
creates, either via the GUI or as a translation from the
collection that contains the verticies and edges. A
rudimentary application would naively draw each vertex
according to a pre-determined grid and then draw the
edges using the given vertex geometry.
17
 18
19
 20

	CS211, Lecture 25
	More Graphs
	Announcements:
	Overview:
	1. Motivation
	1.1 Up To Today:
	1.2 What To Do With Graphs?

	2. Representations
	2.1 Implicit
	2.2 Explicit
	2.3 Adjacency Matrix
	2.4 Adjacency List
	2.5 graph types to develop:
	2.6 Undirected
	2.7 Directed
	2.8 Weighted
	2.9 Choice of AM or AL?

	3. Implementation
	3.1 Implicit
	3.2 Explicit

	4. Verticies
	4.1 Fields
	4.2 Constructor
	4.3 Methods

	5. Edges
	5.1 Fields
	5.2 Constructors
	5.3 Methods

	6. Directed Graphs
	6.1 Fields
	6.2 Constructors
	6.3 Methods

	7. Demonstration
	7.1 Code
	7.2 Output

	8. Exercises

