
CS211, LECTURE 25
MORE GRAPHS

ANNOUNCEMENTS:

• office hours today (Tues): 1-3pm

• A6 due Weds 4/30

• makeup assignment (“A7”) info

• bonus points on prelim?

OVERVIEW:

• implicit graph reminder

• explicit graphs

• adjacency matrix and list representations

• design, algorithms and implentation for basic classes

• building graphs
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1. Motivation

1.1 Up To Today:

• graph theory, which leads to …

• implicit graphs and help with homework, then…

• explicit graphs to help build generic graph classes…

• build graphs

1.2 What To Do With Graphs?

• next two lectures…

• generalize traversal: BFS, DFS

• use traversal for searching

• sorting

• shortest path to something

• more…?
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2. Representations

2.1 Implicit

• rules/model creates a network of nodes/edges

• ex) puzzle moves

- each move makes a new puzzle

- treat each state as a node

- so, rules implicit define a graph

• common for games!
More Graphs Representations 3



2.2 Explicit

• define all nodes V and edges E ahead of time

• want system to represent edges

• why? it’s the “biggest problem”:

- G = (V,E) and each edge e in E is a pair (v1,v2)

- most edges possible? |V|^2
(form pairs from all nodes)

- most sets of edges possible? 2^(|V|^2)

• so, use container to represent edges

- adjacency matrix

- adjacency list
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2.3 Adjacency Matrix

• adjacency matrix

• terms
: node i;  node j

: edge between nodes i ( ) and j ( )

belongs to set of edges
: weight of edge between nodes i and j

• : the matrix (rectangular 2x2 array) as rows (i) and

cols (j); coords correspond to nodes i and j
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2.4 Adjacency List

• adjacency list: linked list of nodes adjacent to a node

• need  lists

2.5 graph types to develop:

• undirected

• directed

• weighted

V
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2.6 Undirected
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2.7 Directed
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2.8 Weighted

• assuming also weighted

• : cost or weight of edge from node i to node j

• sometimes use sentinel  to represent “no edge”
between i and j
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2.9 Choice of AM or AL?

• Adjacency Matrix

- uses  space

- can answer “is there an edge from i to j?” in time

- enumerating all nodes adjacent to i:  (find all
nodes j in row for i)

- could be sparse because of wasted space (0s)

- better for dense graphs (lots of edges)!

• Adjacency List

- uses O(|V|+|E|) space (|V| for i nodes, |E| for j nodes
emanating from each i node)

- can answer question “is there an edge from i to j?” in
 time

- enumerating all nodes adjacent to i: per adjacent
node in linked list

- better for sparse graphs (few edges)!

O V
2( )

O 1( )

O V( )

O E( )

O 1( )
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3. Implementation

3.1 Implicit

• can use containers to store node and edge info

• a bit too problem specific, though effective

3.2 Explicit

• Adjacency Matrix - left as exercise

• Adjacency List

- using linked list to allow for flexible building

- kind of gives implicit building by allowing for node/
edge creation “on the fly”

• focus on digragh, but could be weighted

- Sections 3, 4, 5, 6

- many methods left out – will see for graph problems
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4. Verticies

4.1 Fields

• label: we like to have names, numbers, …

• edges: collection of all emanating edges from the
current vertex

• visited: need later to tag vertex for searching…

• sometimes includes cost (cost to get here from
somewhere)

4.2 Constructor

• set label

• create edges adjacency list (AL)

4.3 Methods

• addEdge: add to AL

• equals: need for path checking

• more?
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import java.util.*;

public class Vertex {

private Object label;
private LinkedList edges; // adjacent edges
private boolean visited; // tag

public Vertex(Object o) {
label = o;
edges = new LinkedList();

}

public void addEdge(Edge e, int weight) {
Vertex source = this;
Vertex dest = e.getDest();
edges.add(new Edge(source,dest,weight));

}

public void addEdge(Edge e) {
addEdge(e,0);

}

public boolean equals(Vertex other) {
return label.equals( ((Vertex)other).label );

}

public String toString() {
return label.toString();

}

public Collection getEdges() { return edges; }

} // Class Vertex
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5. Edges

5.1 Fields

• source: s->d, the node from which edge emanates

• dest: actually, all you need is this since Vertex keeps
track of adjacent edges of source

• weight: could make double (sometimes called cost)

5.2 Constructors

• build edge from s->d

• can default to weight of 0 to handle unweighted graphs

5.3 Methods

• equals and compareTo:

- many algorithms want to know shortest path

- need to compare costs of going in different directions

• toString: "source-weight->dest"

• more?
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public class Edge implements Comparable {

private Vertex source; // s (s->d)
private Vertex dest;   // d
private int weight; // also called cost

public Edge(Vertex source, Vertex dest, int weight) {
this.source=source;
this.dest=dest;
this.weight=weight;

}

public Edge(Vertex source, Vertex dest) {
this(source,dest,0);

}

// getters and setters not shown

public boolean equals(Object other) {
Edge e = (Edge) other;
return weight == e.weight;

}

public int compareTo(Object other) {
Edge e = (Edge) other;
return (int) (weight-e.weight);

}

// Stringify as (d,--w->,s):
public String toString() {

return "("+source+"-"+weight+"->"+dest+")";
}

} // Class Edge
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6. Directed Graphs

6.1 Fields

• verticies dictionary:

- key-val pairs of (VertexName,Vertex)

- each Vertex points to its adjacency list!

• edgeCount

6.2 Constructors

• set verticies to LinkedHashMap

• maintains order of nodes in order created

• nodes must be created before edges this way!

6.3 Methods

• use vertex names/labels!

• addVertex: put Vertex in Map: (name, Vertex)

• addEdge: connect s and d nodes (they must exist!)
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import java.util.*;
public class Digraph {

private Map verticies; // dictionary of nodes
private int edgeCount; // number of edges

public Digraph( ) {
verticies = new LinkedHashMap();

}

// Add vertex to map
public void addVertex(Object name) {

verticies.put(name, new Vertex(name));
}

// Adds edge (source and dest node must exist!):
public void addEdge(Object s, Object d, int weight) {

// Key is NAME of Vertex
// Val is THE Vertex
// So, get keys of s and d and use them to
// retrieve their vals (their Verticies):
Vertex source = (Vertex)verticies.get(s);
Vertex dest = (Vertex)verticies.get(d);

// Create edge between source and dest:
s.addEdge(new Edge(source,dest,weight));
edgeCount++;

}

public void addEdge(Object source, Object dest) {
addEdge(source,dest,0);

}
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// Stringify: return edges with
// their adjacency lists:
public String toString() {

String s = "";

Iterator it=verticies.keySet().iterator();

while(it.hasNext()) {

// current node label:
Object key = it.next();

// current Vertex:
Vertex val = (Vertex) verticies.get(key);

// build string for current vertex in Map:
s += "[" + val + "]" + "-->";
s += val.getEdges();
s += "\n";

}

return s;

} // Method toString

} // Class Digraph
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7. Demonstration

7.1 Code

public class TestDigraph {

public static void main(String[] args) {

Digraph g = new Digraph();
g.addVertex("A");
g.addVertex("B");
g.addVertex("C");
g.addEdge("A","B");
g.addEdge("A","C");
g.addEdge("B","C");
System.out.println(g);

}
}

7.2 Output

[A]-->[(A-0->B), (A-0->C)]
[B]-->[(B-0->C)]
[C]-->[]
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8. Exercises

• Demonstrate why we use edges for explicit
representations of graphs.

• Develop Vertex, Edge, Digraph, and
TestDigraph classes for the adjacency matrix
approach. You should develop methods to handle I/O in
reading in a grid of adjacencies to help build a graph.

• Remove the source node field from class Edge and
modify the remaining classes as necessary. This design
is a bit more common than the examples given to you.

• Rewrite Digraph’s addEdge such that it does not
assume that the nodes exist. You may either throw an
exception or perhaps create more nodes….

• Graphical graph: This was once a final project long
ago…develop a GUI tool that draws a graph that a user
creates, either via the GUI or as a translation from the
collection that contains the verticies and edges. A
rudimentary application would naively draw each vertex
according to a pre-determined grid and then draw the
edges using the given vertex geometry.
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