
CS211, LECTURE 25
MORE GRAPHS

ANNOUNCEMENTS:

• office hours today (Tues): 1-3pm

• A6 due Weds 4/30

• makeup assignment (“A7”) info

• bonus points on prelim?

OVERVIEW:

• implicit graph reminder

• explicit graphs

• adjacency matrix and list representations

• design, algorithms and implentation for basic classes

• building graphs
CS211, Lecture 25 1

1. Motivation

1.1 Up To Today:

• graph theory, which leads to …

• implicit graphs and help with homework, then…

• explicit graphs to help build generic graph classes…

• build graphs

1.2 What To Do With Graphs?

• next two lectures…

• generalize traversal: BFS, DFS

• use traversal for searching

• sorting

• shortest path to something

• more…?
More Graphs Motivation 2

2. Representations

2.1 Implicit

• rules/model creates a network of nodes/edges

• ex) puzzle moves

- each move makes a new puzzle

- treat each state as a node

- so, rules implicit define a graph

• common for games!
More Graphs Representations 3

2.2 Explicit

• define all nodes V and edges E ahead of time

• want system to represent edges

• why? it’s the “biggest problem”:

- G = (V,E) and each edge e in E is a pair (v1,v2)

- most edges possible? |V|^2
(form pairs from all nodes)

- most sets of edges possible? 2^(|V|^2)

• so, use container to represent edges

- adjacency matrix

- adjacency list
More Graphs Representations 4

2.3 Adjacency Matrix

• adjacency matrix

• terms
: node i; node j

: edge between nodes i () and j ()

belongs to set of edges
: weight of edge between nodes i and j

• : the matrix (rectangular 2x2 array) as rows (i) and

cols (j); coords correspond to nodes i and j

Aij

wij vi v j,{ } E∈

0 otherwise



=

vi v j

vi v j,{ } E∈ vi v j

E

wij

Aij
More Graphs Representations 5

2.4 Adjacency List

• adjacency list: linked list of nodes adjacent to a node

• need lists

2.5 graph types to develop:

• undirected

• directed

• weighted

V

More Graphs Representations 6

2.6 Undirected

1 1 1
1 1
1 1 1
1 1

i
j

A B C D
A
B
C
D

Aij

1 vi v j,{ } E∈

0 otherwise



=

A
B
C
D

B C D

A C

A C

A B D

Use array A of lists:
Ai stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai

B
C

D

A

More Graphs Representations 7

2.7 Directed

1 1 1 1

1 1
1

i
j

A B C D
A
B
C
D

Aij

1 vi v j,() E∈

0 otherwise



=

A
B
C
D

A B D

C

B D

Use array A of lists:
Ai stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai

C

B
C

D

A

More Graphs Representations 8

2.8 Weighted

• assuming also weighted

• : cost or weight of edge from node i to node j

• sometimes use sentinel to represent “no edge”
between i and j

wij

∞

1 5 2 3

4 6
7

i
j

A B C D
A
B
C
D

Aij

wij vi v j,() E∈

0 otherwise



=

A
B
C
D

Use array A of lists: include weights
List for i contains j,w for edge (i,j)

A 1 B 5 C 2

B 4 D 6

C 7

D 3

B
C

D

A

5

1

4

2

3

6
7

More Graphs Representations 9

2.9 Choice of AM or AL?

• Adjacency Matrix

- uses space

- can answer “is there an edge from i to j?” in time

- enumerating all nodes adjacent to i: (find all
nodes j in row for i)

- could be sparse because of wasted space (0s)

- better for dense graphs (lots of edges)!

• Adjacency List

- uses O(|V|+|E|) space (|V| for i nodes, |E| for j nodes
emanating from each i node)

- can answer question “is there an edge from i to j?” in
 time

- enumerating all nodes adjacent to i: per adjacent
node in linked list

- better for sparse graphs (few edges)!

O V
2()

O 1()

O V()

O E()

O 1()
More Graphs Representations 10

3. Implementation

3.1 Implicit

• can use containers to store node and edge info

• a bit too problem specific, though effective

3.2 Explicit

• Adjacency Matrix - left as exercise

• Adjacency List

- using linked list to allow for flexible building

- kind of gives implicit building by allowing for node/
edge creation “on the fly”

• focus on digragh, but could be weighted

- Sections 3, 4, 5, 6

- many methods left out – will see for graph problems
More Graphs Implementation 11

4. Verticies

4.1 Fields

• label: we like to have names, numbers, …

• edges: collection of all emanating edges from the
current vertex

• visited: need later to tag vertex for searching…

• sometimes includes cost (cost to get here from
somewhere)

4.2 Constructor

• set label

• create edges adjacency list (AL)

4.3 Methods

• addEdge: add to AL

• equals: need for path checking

• more?
More Graphs Verticies 12

import java.util.*;

public class Vertex {

private Object label;
private LinkedList edges; // adjacent edges
private boolean visited; // tag

public Vertex(Object o) {
label = o;
edges = new LinkedList();

}

public void addEdge(Edge e, int weight) {
Vertex source = this;
Vertex dest = e.getDest();
edges.add(new Edge(source,dest,weight));

}

public void addEdge(Edge e) {
addEdge(e,0);

}

public boolean equals(Vertex other) {
return label.equals(((Vertex)other).label);

}

public String toString() {
return label.toString();

}

public Collection getEdges() { return edges; }

} // Class Vertex
More Graphs Verticies 13

5. Edges

5.1 Fields

• source: s->d, the node from which edge emanates

• dest: actually, all you need is this since Vertex keeps
track of adjacent edges of source

• weight: could make double (sometimes called cost)

5.2 Constructors

• build edge from s->d

• can default to weight of 0 to handle unweighted graphs

5.3 Methods

• equals and compareTo:

- many algorithms want to know shortest path

- need to compare costs of going in different directions

• toString: "source-weight->dest"

• more?
More Graphs Edges 14

public class Edge implements Comparable {

private Vertex source; // s (s->d)
private Vertex dest; // d
private int weight; // also called cost

public Edge(Vertex source, Vertex dest, int weight) {
this.source=source;
this.dest=dest;
this.weight=weight;

}

public Edge(Vertex source, Vertex dest) {
this(source,dest,0);

}

// getters and setters not shown

public boolean equals(Object other) {
Edge e = (Edge) other;
return weight == e.weight;

}

public int compareTo(Object other) {
Edge e = (Edge) other;
return (int) (weight-e.weight);

}

// Stringify as (d,--w->,s):
public String toString() {

return "("+source+"-"+weight+"->"+dest+")";
}

} // Class Edge
More Graphs Edges 15

6. Directed Graphs

6.1 Fields

• verticies dictionary:

- key-val pairs of (VertexName,Vertex)

- each Vertex points to its adjacency list!

• edgeCount

6.2 Constructors

• set verticies to LinkedHashMap

• maintains order of nodes in order created

• nodes must be created before edges this way!

6.3 Methods

• use vertex names/labels!

• addVertex: put Vertex in Map: (name, Vertex)

• addEdge: connect s and d nodes (they must exist!)
More Graphs Directed Graphs 16

import java.util.*;
public class Digraph {

private Map verticies; // dictionary of nodes
private int edgeCount; // number of edges

public Digraph() {
verticies = new LinkedHashMap();

}

// Add vertex to map
public void addVertex(Object name) {

verticies.put(name, new Vertex(name));
}

// Adds edge (source and dest node must exist!):
public void addEdge(Object s, Object d, int weight) {

// Key is NAME of Vertex
// Val is THE Vertex
// So, get keys of s and d and use them to
// retrieve their vals (their Verticies):
Vertex source = (Vertex)verticies.get(s);
Vertex dest = (Vertex)verticies.get(d);

// Create edge between source and dest:
s.addEdge(new Edge(source,dest,weight));
edgeCount++;

}

public void addEdge(Object source, Object dest) {
addEdge(source,dest,0);

}

More Graphs Directed Graphs 17

// Stringify: return edges with
// their adjacency lists:
public String toString() {

String s = "";

Iterator it=verticies.keySet().iterator();

while(it.hasNext()) {

// current node label:
Object key = it.next();

// current Vertex:
Vertex val = (Vertex) verticies.get(key);

// build string for current vertex in Map:
s += "[" + val + "]" + "-->";
s += val.getEdges();
s += "\n";

}

return s;

} // Method toString

} // Class Digraph
More Graphs Directed Graphs 18

7. Demonstration

7.1 Code

public class TestDigraph {

public static void main(String[] args) {

Digraph g = new Digraph();
g.addVertex("A");
g.addVertex("B");
g.addVertex("C");
g.addEdge("A","B");
g.addEdge("A","C");
g.addEdge("B","C");
System.out.println(g);

}
}

7.2 Output

[A]-->[(A-0->B), (A-0->C)]
[B]-->[(B-0->C)]
[C]-->[]
More Graphs Demonstration 19

8. Exercises

• Demonstrate why we use edges for explicit
representations of graphs.

• Develop Vertex, Edge, Digraph, and
TestDigraph classes for the adjacency matrix
approach. You should develop methods to handle I/O in
reading in a grid of adjacencies to help build a graph.

• Remove the source node field from class Edge and
modify the remaining classes as necessary. This design
is a bit more common than the examples given to you.

• Rewrite Digraph’s addEdge such that it does not
assume that the nodes exist. You may either throw an
exception or perhaps create more nodes….

• Graphical graph: This was once a final project long
ago…develop a GUI tool that draws a graph that a user
creates, either via the GUI or as a translation from the
collection that contains the verticies and edges. A
rudimentary application would naively draw each vertex
according to a pre-determined grid and then draw the
edges using the given vertex geometry.
More Graphs Exercises 20

	CS211, Lecture 25
	More Graphs
	Announcements:
	. office hours today (Tues): 1-3pm
	. A6 due Weds 4/30
	. makeup assignment (“A7”) info
	. bonus points on prelim?

	Overview:
	. implicit graph reminder
	. explicit graphs
	. adjacency matrix and list representations
	. design, algorithms and implentation for basic classes
	. building graphs

	1. Motivation
	1.1 Up To Today:
	. graph theory, which leads to …
	. implicit graphs and help with homework, then…
	. explicit graphs to help build generic graph classes…
	. build graphs

	1.2 What To Do With Graphs?
	. next two lectures…
	. generalize traversal: BFS, DFS
	. use traversal for searching
	. sorting
	. shortest path to something
	. more…?

	2. Representations
	2.1 Implicit
	. rules/model creates a network of nodes/edges
	. ex) puzzle moves
	- each move makes a new puzzle
	- treat each state as a node
	- so, rules implicit define a graph

	. common for games!

	2.2 Explicit
	. define all nodes V and edges E ahead of time
	. want system to represent edges
	. why? it’s the “biggest problem”:
	- G = (V,E) and each edge e in E is a pair (v1,v2)
	- most edges possible? |V|^2 (form pairs from all nodes)
	- most sets of edges possible? 2^(|V|^2)

	. so, use container to represent edges
	- adjacency matrix
	- adjacency list

	2.3 Adjacency Matrix
	. adjacency matrix
	. terms : node i; node j : edge between nodes i () and j () belongs to set of edges : weight of edge between nodes i and j
	. : the matrix (rectangular 2x2 array) as rows (i) and cols (j); coords correspond to nodes i and j

	2.4 Adjacency List
	. adjacency list: linked list of nodes adjacent to a node
	. need lists
	2.5 graph types to develop:
	. undirected
	. directed
	. weighted

	2.6 Undirected
	2.7 Directed
	2.8 Weighted
	. assuming also weighted
	. : cost or weight of edge from node i to node j
	. sometimes use sentinel to represent “no edge” between i and j

	2.9 Choice of AM or AL?
	. Adjacency Matrix
	- uses space
	- can answer “is there an edge from i to j?” in time
	- enumerating all nodes adjacent to i: (find all nodes j in row for i)
	- could be sparse because of wasted space (0s)
	- better for dense graphs (lots of edges)!

	. Adjacency List
	- uses O(|V|+|E|) space (|V| for i nodes, |E| for j nodes emanating from each i node)
	- can answer question “is there an edge from i to j?” in time
	- enumerating all nodes adjacent to i: per adjacent node in linked list
	- better for sparse graphs (few edges)!

	3. Implementation
	3.1 Implicit
	. can use containers to store node and edge info
	. a bit too problem specific, though effective

	3.2 Explicit
	. Adjacency Matrix - left as exercise
	. Adjacency List
	- using linked list to allow for flexible building
	- kind of gives implicit building by allowing for node/ edge creation “on the fly”

	. focus on digragh, but could be weighted
	- Sections 3, 4, 5, 6
	- many methods left out - will see for graph problems

	4. Verticies
	4.1 Fields
	. label: we like to have names, numbers, …
	. edges: collection of all emanating edges from the current vertex
	. visited: need later to tag vertex for searching…
	. sometimes includes cost (cost to get here from somewhere)

	4.2 Constructor
	. set label
	. create edges adjacency list (AL)

	4.3 Methods
	. addEdge: add to AL
	. equals: need for path checking
	. more?

	import java.util.*;
	public class Vertex {
	private Object label;
	private LinkedList edges; // adjacent edges
	private boolean visited; // tag
	public Vertex(Object o) {
	label = o;
	edges = new LinkedList();
	}
	public void addEdge(Edge e, int weight) {
	Vertex source = this;
	Vertex dest = e.getDest();
	edges.add(new Edge(source,dest,weight));
	}
	public void addEdge(Edge e) {
	addEdge(e,0);
	}
	public boolean equals(Vertex other) {
	return label.equals(((Vertex)other).label);
	}
	public String toString() {
	return label.toString();
	}
	public Collection getEdges() { return edges; }
	} // Class Vertex

	5. Edges
	5.1 Fields
	. source: s->d, the node from which edge emanates
	. dest: actually, all you need is this since Vertex keeps track of adjacent edges of source
	. weight: could make double (sometimes called cost)

	5.2 Constructors
	. build edge from s->d
	. can default to weight of 0 to handle unweighted graphs

	5.3 Methods
	. equals and compareTo:
	- many algorithms want to know shortest path
	- need to compare costs of going in different directions

	. toString: "source-weight->dest"
	. more?

	public class Edge implements Comparable {
	private Vertex source; // s (s->d)
	private Vertex dest; // d
	private int weight; // also called cost
	public Edge(Vertex source, Vertex dest, int weight) {
	this.source=source;
	this.dest=dest;
	this.weight=weight;
	}
	public Edge(Vertex source, Vertex dest) {
	this(source,dest,0);
	}
	// getters and setters not shown
	public boolean equals(Object other) {
	Edge e = (Edge) other;
	return weight == e.weight;
	}
	public int compareTo(Object other) {
	Edge e = (Edge) other;
	return (int) (weight-e.weight);
	}
	// Stringify as (d,--w->,s):
	public String toString() {
	return "("+source+"-"+weight+"->"+dest+")";
	}
	} // Class Edge

	6. Directed Graphs
	6.1 Fields
	. verticies dictionary:
	- key-val pairs of (VertexName,Vertex)
	- each Vertex points to its adjacency list!

	. edgeCount

	6.2 Constructors
	. set verticies to LinkedHashMap
	. maintains order of nodes in order created
	. nodes must be created before edges this way!

	6.3 Methods
	. use vertex names/labels!
	. addVertex: put Vertex in Map: (name, Vertex)
	. addEdge: connect s and d nodes (they must exist!)

	import java.util.*;
	public class Digraph {
	private Map verticies; // dictionary of nodes
	private int edgeCount; // number of edges
	public Digraph() {
	verticies = new LinkedHashMap();
	}
	// Add vertex to map
	public void addVertex(Object name) {
	verticies.put(name, new Vertex(name));
	}
	// Adds edge (source and dest node must exist!):
	public void addEdge(Object s, Object d, int weight) {
	// Key is NAME of Vertex
	// Val is THE Vertex
	// So, get keys of s and d and use them to
	// retrieve their vals (their Verticies):
	Vertex source = (Vertex)verticies.get(s);
	Vertex dest = (Vertex)verticies.get(d);
	// Create edge between source and dest:
	s.addEdge(new Edge(source,dest,weight));
	edgeCount++;
	}
	public void addEdge(Object source, Object dest) {
	addEdge(source,dest,0);
	}

	// Stringify: return edges with
	// their adjacency lists:
	public String toString() {
	String s = "";
	Iterator it=verticies.keySet().iterator();
	while(it.hasNext()) {
	// current node label:
	Object key = it.next();
	// current Vertex:
	Vertex val = (Vertex) verticies.get(key);
	// build string for current vertex in Map:
	s += "[" + val + "]" + "-->";
	s += val.getEdges();
	s += "\n";
	}
	return s;
	} // Method toString
	} // Class Digraph

	7. Demonstration
	7.1 Code
	public class TestDigraph {
	public static void main(String[] args) {
	Digraph g = new Digraph();
	g.addVertex("A");
	g.addVertex("B");
	g.addVertex("C");
	g.addEdge("A","B");
	g.addEdge("A","C");
	g.addEdge("B","C");
	System.out.println(g);
	}
	}

	7.2 Output
	[A]-->[(A-0->B), (A-0->C)]
	[B]-->[(B-0->C)]
	[C]-->[]

	8. Exercises
	. Demonstrate why we use edges for explicit representations of graphs.
	. Develop Vertex, Edge, Digraph, and TestDigraph classes for the adjacency matrix approach. You should develop methods to handle I/O in reading in a grid of adjacencies to help build a graph.
	. Remove the source node field from class Edge and modify the remaining classes as necessary. This design is a bit more common than the examples given to you.
	. Rewrite Digraph’s addEdge such that it does not assume that the nodes exist. You may either throw an exception or perhaps create more nodes….
	. Graphical graph: This was once a final project long ago…develop a GUI tool that draws a graph that a user creates, either via the GUI or as a translation from the collection that contains the verticies and edges. A rudimentary application w...

