
CS211, LECTURE 23
INTRODUCTION TO GRAPHS

ANNOUNCEMENTS:

• A6 posted

• Prelim 2 tonight (OH 155: A-S; OH 165 T-Z)

• A7 TBA…

• office hours this week

OVERVIEW:

• motivation

• terminology

• DFS

• BFS

• algorithm for solution process

1. Motivation

• What happens if data structure links “cross over?

• think loops and circular linked lists

• informally, we have a graph

1.1 The Gist

connect the nodes:

1.2 Applications

• “traveling salesman” and maps

• circuits

• structural models

• finite state machines

• and many more!
1.3 N-Puzzle Application 2. Graphs

2.1 Nodes

• data, items, points…

• the things/states/info that you want to connect

• also called verticies (set V)

2.2 Edges

• the lines between the points (set E)

• shows how and which points are connected

• can apply weights and direction
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2.3 Graph

• set of edges, set of verticies

• |V| = size of V, |E| = size of E

• generalization of many other data structures!

• example:

2.4 Directed Graphs

• also called digraphs

• G = (V,E)

• edges have 1 direction

• write edge as ordered pair (s,d) (source, destination)
or s→d

• an edge may have node connect to itself (s==d)

• for 2-way direction, use another edge

• example:
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Vertices = V = {A,B,C,D}

Edges = E =
{(A,B),(B,C),(A,D),(A,C),(C,D),(D,C)}

Directed Graph G = (V,E)

Example: Edges (D,C) and (C,D)
are different!
2.5 More Directed Graphs Terms

• adjacency: for (a,b), b is adjacent to a because there is
an edge connecting b to a (reverse is not true, because of
directed graph)

• out-edges of node n: set of edges whose source is n

• out-degree of node n: number of out-edges of n

• in-edges of node n: set of edges whose destination is n

• in-degree of node n: number of in-edges of n

2.6 Continuing Directed Graph Terms

• path: sequence of edges in which destination node of an
edge is source node of next edge in sequence; also, set
of vertices that satisfy the same property
ex) edge def: (A,B),(B,C),(C,D)
ex) node def: A,B,C,D

• length of path: number of edges in path or sum of
weights on path (see Weight

• source of path: source of first edge on path

• destination of path: destination of last edge on path

• reachability: nodes n is reachable from node m is there
is a path from m to n (might have many paths between
nodes)

• simple path: a path in which every node is the source
and destination of at most two edges on the path (path
does not cross vertex more than once)
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2.7 Cycles

• cycle: a simple path whose source and destination nodes
are the same

• length of cycle: length of path (depends on choice of
nodes or edges for description)

• loop: path (a,b),(b,a) (edges) or (a,a) (nodes)

3. More Graph Types/Qualities

3.1 Undirected Graphs

• edges have no arrows, so use set for edges: {a,b}

• can go any direction on edge

• nodes cannot form loops ( {a,a} becomes just {a})

3.2 Directed Acyclic Graphs

• also called DAGs

• digraph with no cycles

• note: trees are DAGs (but not vice versa)

3.3 Connected Graphs

• a graph with path between every pair of distinct verticies

• disconnected graph includes “lone wolf” nodes (no
edges)

3.4 Complete Graphs

• edge between every pair of distinct vertex
3.5 Labeled Graphs

• attach additional info to nodes and/or edges

• weights/costs: values on edges (best/worst edges)

- edge ex) choosing shortest/quickest/best roads to take
to get between towns

- node ex) importance of reaching certain towns (“fun
quotient”)

• also called weighted graphs

3.6 Trees?

• yes, directed acyclic graphs

• see Tree notes for pretty much the same definitions of
vertex and edge

3.7 Sparse and Dense Graphs

• sparse: not many edges

-
- ex) graph with same number of edges emanating from

nodes has , so

• dense: many edges

-  essentially on the order of
- see pg. 546 DS&A (Def 16.6) for more precision
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4. Representations

4.1 Implicit

• rules/model creates a network of nodes/edges

• ex) puzzle moves

- each move makes a new puzzle
- treat each state as a node
- so, rules implicit define a graph

• common for games!

4.2 Explicit

• define all nodes V and edges E ahead of time

• want system to represent edges

• why? it’s the “biggest problem”:

- G = (V,E) and each edge e in E is a pair (v1,v2)
- most edges possible? |V|^2

(form pairs from all nodes)
- most sets of edges possible? 2^(|V|^2)

• so, use container to represent edges

- adjacency matrix
- adjacency list
4.3 Adjacency Matrix

• adjacency matrix

• terms
: node i;  node j

: edge between nodes i ( ) and j ( )

belongs to set of edges

: weight of edge between nodes i and j

• : the matrix (rectangular 2x2 array) as rows (i) and

cols (j); coords correspond to nodes i and j

4.4 Adjacency List

• adjacency list: linked list of nodes adjacent to a node

• need  lists

4.5 graph types to develop:

• undirected

• directed

• weighted
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4.6 Undirected 4.7 Directed
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Use array A of lists:
Ai stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai
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Ai stores a linked list of nodes
no edge implied by order in list
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4.8 Weighted

• assuming also weighted

• : cost or weight of edge from node i to node j

4.9 Choice of AM or AL?

• Adjacency Matrix

- uses  space

- can answer “is there an edge from i to j?” in
time

- enumerating all nodes adjacent to i:  (find all
nodes j in row for i)

- could be sparse because of wasted space (0s)
- better for dense graphs (lots of edges)!

• Adjacency List

- uses O(|V|+|E|) space (|V| for i nodes, |E| for j nodes
emanating from each i node)

- can answer question “is there an edge from i to j?” in
 time

- enumerating all nodes adjacent to i: per adjacent
node in linked list

- better for sparse graphs (few edges)!
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Use array A of lists: include weights
List for i contains j,w for edge (i,j)

A 1 B 5 C 2

B 4 D 6

C 7

B
C

D

A

5

1

4

2

3

6
7

O V
2( )

O 1( )

O V( )

O E( )

O 1( )
17
 18
19
 20



5. Interesting Problems

5.1 Paths

• find ways to reach/find/collect/organize information
from network of nodes

• focus of a lot of research!

5.2 Reachability

• is there a path from a given node to another node?

• ex) find the solved state of N-Puzzle from scrambled
state

5.3 Minimal Path

• find the shortest path from a node to another

• find the shortest path from every node to another

• use weights to find min/max distances

5.4 Cycles

• ex) Traveling Salesman problem

• find the smallest length cucle that passes through all
nodes

• no one knows if there is an efficient algorithm for this
(NP/NP-complete problems)

6. Exercises

• Show all edges and verticies of a 2x2 N-Puzzle.

• Demonstrate a scenario/game/model that forms an
implicit graph.

• Demonstrate why we use edges for explicit
representations of graphs. (Section 4.2)
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