CS211, LECTURE 23 1. Motivation
INTRODUCTION TO GRAPHS * What happens if data structure links “cross over?
ANNOUNCEMENTS: + think loops and circular linked lists
* A6 posted « informally, we have a graph
* Prelim 2 tonight (OH 155: A-S; OH 165 T-Z) 11  The Gist
« A7TBA... he nod
tt :
+ office hours this week connect e nodes
OVERVIEW:
* motivation
* terminology
* DFS
* BFS 1.2 Applications
* algorithm for solution process .
» “traveling salesman” and maps
* circuits
* structural models
+ finite state machines
* and many more!
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1.3 N-Puzzle Application 2. Graphs
21 Nodes
123
: ; 6 « data, items, points...
i ; Z * the things/states/info that you want to connect
213 7] |8 * also called verticies (set V)
415
T8l 2.2 Edges
; 2 z + the lines between the points (set E)
7|5]8  shows how and which points are connected
112]3 * can apply weights and direction
4|5
7 8
3 4




2.3 Graph
« set of edges, set of verticies
o |V]=size of V, |E| = size of E
* generalization of many other data structures!

* example:

2.4 Directed Graphs

also called digraphs
G=(VE)
edges have 1 direction

write edge as ordered pair (s,d) (source, destination)
ors—d

A * an edge may have node connect to itself (s==d)
D + for 2-way direction, use another edge
* example:
B
c
A Directed Graph G = (V,E)
D Vertices = V= {A,B,C,D}
Edges = E=
B {(A,B),(B,C),(A,D),(A,C),(C,D),(D,C)}
¢ Example: Edges (D,C) and (C,D)
are different!
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2.5 More Directed Graphs Terms

* adjacency: for (a,b), b is adjacent to a because there is
an edge connecting b to a (reverse is not true, because of
directed graph)

* out-edges of node n: set of edges whose source is n
* out-degree of node n: number of out-edges of n
* in-edges of node n: set of edges whose destination is n

* in-degree of node n: number of in-edges of n

adjacency
out-edge
out-degree
B in-edge

in-degree

2.6 Continuing Directed Graph Terms

* path: sequence of edges in which destination node of an

edge is source node of next edge in sequence; also, set
of vertices that satisfy the same property

ex) edge def: (A,B),(B,C),(C,D)

ex) node def: A,B,C,D

length of path: number of edges in path or sum of
weights on path (see Weight

source of path: source of first edge on path
destination of path: destination of last edge on path
reachability: nodes n is reachable from node m is there
is a path from m to n (might have many paths between
nodes)

simple path: a path in which every node is the source
and destination of at most two edges on the path (path
does not cross vertex more than once)
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2.7 Cycles
* cycle: a simple path whose source and destination nodes
are the same

* length of cycle: length of path (depends on choice of
nodes or edges for description)

* loop: path (a,b),(b,a) (edges) or (a,a) (nodes)

More Graph Types/Qualities
3.1 Undirected Graphs

* edges have no arrows, so use set for edges: {a,b}
* can go any direction on edge

* nodes cannot form loops ( {a,a} becomes just {a})
3.2 Directed Acyclic Graphs

« also called DAGs
* digraph with no cycles
* note: trees are DAGs (but not vice versa)

3.3 Connected Graphs

* a graph with path between every pair of distinct verticies

+ disconnected graph includes “lone wolf” nodes (no
edges)

3.4 Complete Graphs

+ edge between every pair of distinct vertex
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3.5 Labeled Graphs

* attach additional info to nodes and/or edges
* weights/costs: values on edges (best/worst edges)

- edge ex) choosing shortest/quickest/best roads to take
to get between towns

- node ex) importance of reaching certain towns (“fun
quotient™)

* also called weighted graphs
3.6 Trees?
* yes, directed acyclic graphs

* see Tree notes for pretty much the same definitions of
vertex and edge

3.7 Sparse and Dense Graphs

* sparse: not many edges

- |El = o(Vl)
- ex) graph with same number of edges emanating from
nodes has |E| = k[V|,so [E| = O(|V])

A
V=4

_ hedges _
|E] %_nodem(4n0des) 8edges
* dense: many edges

- |E| essentially on the order of | V\z
- see pg. 546 DS&A (Def 16.6) for more precision

vl =4

P IE =16

1"
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4, Representations
41 Implicit

* rules/model creates a network of nodes/edges
* ex) puzzle moves

- each move makes a new puzzle
- treat each state as a node
- 50, rules implicit define a graph

» common for games!

4.2 Explicit

* define all nodes V" and edges E ahead of time
* want system to represent edges
» why? it’s the “biggest problem”:
- G=(V,E) and each edge e in E is a pair (v1,v2)
- most edges possible? | V]2
(form pairs from all nodes)
- most sets of edges possible? 2°(|V]"2)

* 50, use container to represent edges

- adjacency matrix
- adjacency list
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4.3 Adjacency Matrix
* adjacency matrix
w,; {v,v} OE
4; =0 von
[0 otherwise

* terms
v;: node i; v; node j

{va vj} 0 E : edge between nodes i (v; ) and j (vj)
belongs to set of edges £

Wit weight of edge between nodes i and j

* A4 ik the matrix (rectangular 2x2 array) as rows (i) and

cols (j); coords correspond to nodes i and j

4.4 Adjacency List

* adjacency list: linked list of nodes adjacent to a node

 need |V] lists
4.5 graph types to develop:

e undirected
e directed

» weighted
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4.6 Undirected

_ Dl { Vi Vj} UE Use array A4 of lists:
ij O X A; stores a linked list of nodes
0 otherwise no edge implied by order in list
nodes must be adjacent to 4;

j

4.7 Directed

_ gl (v vj) OkE

Use array 4 of lists:

ij . A; stores a linked list of nodes
Y otherwise no edge implied by order in list

nodes must be adjacent to 4;

j

iNNABCD iNNABCD
NERRE NHRERE
B[1] [1 B
clili cl h| 1
p[1] |1 D 1
A A
D D
B B
c c
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4.8 Weighted 49 Choice of AMor AL?
* assuming also weighted * Adjacency Matrix
* W costor weight of edge from node i to node j - uses O(‘ 2 ) space
- can answer “is there an edge from i to j?” in O(1)
(v, v U 4 of lists: include weight :
= Dy ) B e e o ot () time
YD otherwise - enumerating all nodes adjacent to i: O(|V]) (find all
N nodes j in row for i)
Al1]5]2]3 - could be sparse because of wasted space (0s)
2 e - better for dense graphs (lots of edges)!
D 7 * Adjacency List

- uses O(|V|+E|) space (|V| for i nodes, |E| for j nodes
emanating from each i node)

- can answer question “is there an edge from i to j?”” in
O(|E|) time

- enumerating all nodes adjacent to i: O(1) per adjacent
node in linked list

- Dbetter for sparse graphs (few edges)!
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5.2

5.3

5.4

Interesting Problems

Paths

+ find ways to reach/find/collect/organize information
from network of nodes

 focus of a lot of research!
Reachability

* is there a path from a given node to another node?

* ex) find the solved state of N-Puzzle from scrambled
state

Minimal Path

+ find the shortest path from a node to another
+ find the shortest path from every node to another

* use weights to find min/max distances
Cycles

* ex) Traveling Salesman problem

+ find the smallest length cucle that passes through all
nodes

* no one knows if there is an efficient algorithm for this
(NP/NP-complete problems)

6.

Exercises

» Show all edges and verticies of a 2x2 N-Puzzle.

* Demonstrate a scenario/game/model that forms an
implicit graph.

» Demonstrate why we use edges for explicit
representations of graphs. (Section 4.2)
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