
CS211, LECTURE 23
INTRODUCTION TO GRAPHS

ANNOUNCEMENTS:

• A6 posted

• Prelim 2 tonight (OH 155: A-S; OH 165 T-Z)

• A7 TBA…

• office hours this week

OVERVIEW:

• motivation

• terminology

• DFS

• BFS

• algorithm for solution process

1. Motivation

• What happens if data structure links “cross over?

• think loops and circular linked lists

• informally, we have a graph

1.1 The Gist

connect the nodes:

1.2 Applications

• “traveling salesman” and maps

• circuits

• structural models

• finite state machines

• and many more!
1.3 N-Puzzle Application 2. Graphs

2.1 Nodes

• data, items, points…

• the things/states/info that you want to connect

• also called verticies (set V)

2.2 Edges

• the lines between the points (set E)

• shows how and which points are connected

• can apply weights and direction

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 6

7 5 8

1 2 3

4 5 6

7 8
1
 2
3
 4

2.3 Graph

• set of edges, set of verticies

• |V| = size of V, |E| = size of E

• generalization of many other data structures!

• example:

2.4 Directed Graphs

• also called digraphs

• G = (V,E)

• edges have 1 direction

• write edge as ordered pair (s,d) (source, destination)
or s→d

• an edge may have node connect to itself (s==d)

• for 2-way direction, use another edge

• example:
B

C

D

A

B
C

D

A

Vertices = V = {A,B,C,D}

Edges = E =
{(A,B),(B,C),(A,D),(A,C),(C,D),(D,C)}

Directed Graph G = (V,E)

Example: Edges (D,C) and (C,D)
are different!
2.5 More Directed Graphs Terms

• adjacency: for (a,b), b is adjacent to a because there is
an edge connecting b to a (reverse is not true, because of
directed graph)

• out-edges of node n: set of edges whose source is n

• out-degree of node n: number of out-edges of n

• in-edges of node n: set of edges whose destination is n

• in-degree of node n: number of in-edges of n

2.6 Continuing Directed Graph Terms

• path: sequence of edges in which destination node of an
edge is source node of next edge in sequence; also, set
of vertices that satisfy the same property
ex) edge def: (A,B),(B,C),(C,D)
ex) node def: A,B,C,D

• length of path: number of edges in path or sum of
weights on path (see Weight

• source of path: source of first edge on path

• destination of path: destination of last edge on path

• reachability: nodes n is reachable from node m is there
is a path from m to n (might have many paths between
nodes)

• simple path: a path in which every node is the source
and destination of at most two edges on the path (path
does not cross vertex more than once)

B
C

D

A

adjacency

out-edge

out-degree

in-edge

in-degree

B
C

D

A

5
 6
7
 8

2.7 Cycles

• cycle: a simple path whose source and destination nodes
are the same

• length of cycle: length of path (depends on choice of
nodes or edges for description)

• loop: path (a,b),(b,a) (edges) or (a,a) (nodes)

3. More Graph Types/Qualities

3.1 Undirected Graphs

• edges have no arrows, so use set for edges: {a,b}

• can go any direction on edge

• nodes cannot form loops ({a,a} becomes just {a})

3.2 Directed Acyclic Graphs

• also called DAGs

• digraph with no cycles

• note: trees are DAGs (but not vice versa)

3.3 Connected Graphs

• a graph with path between every pair of distinct verticies

• disconnected graph includes “lone wolf” nodes (no
edges)

3.4 Complete Graphs

• edge between every pair of distinct vertex
3.5 Labeled Graphs

• attach additional info to nodes and/or edges

• weights/costs: values on edges (best/worst edges)

- edge ex) choosing shortest/quickest/best roads to take
to get between towns

- node ex) importance of reaching certain towns (“fun
quotient”)

• also called weighted graphs

3.6 Trees?

• yes, directed acyclic graphs

• see Tree notes for pretty much the same definitions of
vertex and edge

3.7 Sparse and Dense Graphs

• sparse: not many edges

-
- ex) graph with same number of edges emanating from

nodes has , so

• dense: many edges

- essentially on the order of
- see pg. 546 DS&A (Def 16.6) for more precision

E O V()=

E k V= E O V()=

B
C

D

A

V 4=

E 2
edges
node

 4nodes() 8edges= =

E V
2

B
C

D

A
V 4=

E 16=
9
 10
11
 12

4. Representations

4.1 Implicit

• rules/model creates a network of nodes/edges

• ex) puzzle moves

- each move makes a new puzzle
- treat each state as a node
- so, rules implicit define a graph

• common for games!

4.2 Explicit

• define all nodes V and edges E ahead of time

• want system to represent edges

• why? it’s the “biggest problem”:

- G = (V,E) and each edge e in E is a pair (v1,v2)
- most edges possible? |V|^2

(form pairs from all nodes)
- most sets of edges possible? 2^(|V|^2)

• so, use container to represent edges

- adjacency matrix
- adjacency list
4.3 Adjacency Matrix

• adjacency matrix

• terms
: node i; node j

: edge between nodes i () and j ()

belongs to set of edges

: weight of edge between nodes i and j

• : the matrix (rectangular 2x2 array) as rows (i) and

cols (j); coords correspond to nodes i and j

4.4 Adjacency List

• adjacency list: linked list of nodes adjacent to a node

• need lists

4.5 graph types to develop:

• undirected

• directed

• weighted

Aij

wij vi v j,{ } E∈

0 otherwise

=

vi v j

vi v j,{ } E∈ vi v j

E

wij

Aij

V

13
 14
15
 16

4.6 Undirected 4.7 Directed

1 1 1
1 1
1 1 1
1 1

i
j

A B C D
A
B
C
D

Aij

1 vi v j,{ } E∈

0 otherwise

=

A
B
C
D

B C D

A C

A C

A B D

Use array A of lists:
Ai stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai

B
C

D

A

1 1 1 1

1 1
1

i
j

A B C D
A
B
C
D

Aij

1 vi v j,() E∈

0 otherwise

=

A
B
C
D

A B D

C

B D

Use array A of lists:
Ai stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai

C

B
C

D

A

4.8 Weighted

• assuming also weighted

• : cost or weight of edge from node i to node j

4.9 Choice of AM or AL?

• Adjacency Matrix

- uses space

- can answer “is there an edge from i to j?” in
time

- enumerating all nodes adjacent to i: (find all
nodes j in row for i)

- could be sparse because of wasted space (0s)
- better for dense graphs (lots of edges)!

• Adjacency List

- uses O(|V|+|E|) space (|V| for i nodes, |E| for j nodes
emanating from each i node)

- can answer question “is there an edge from i to j?” in
 time

- enumerating all nodes adjacent to i: per adjacent
node in linked list

- better for sparse graphs (few edges)!

wij

1 5 2 3

4 6
7

i
j

A B C D
A
B
C
D

Aij

wij vi v j,() E∈

0 otherwise

=

A
B
C
D

Use array A of lists: include weights
List for i contains j,w for edge (i,j)

A 1 B 5 C 2

B 4 D 6

C 7

B
C

D

A

5

1

4

2

3

6
7

O V
2()

O 1()

O V()

O E()

O 1()
17
 18
19
 20

5. Interesting Problems

5.1 Paths

• find ways to reach/find/collect/organize information
from network of nodes

• focus of a lot of research!

5.2 Reachability

• is there a path from a given node to another node?

• ex) find the solved state of N-Puzzle from scrambled
state

5.3 Minimal Path

• find the shortest path from a node to another

• find the shortest path from every node to another

• use weights to find min/max distances

5.4 Cycles

• ex) Traveling Salesman problem

• find the smallest length cucle that passes through all
nodes

• no one knows if there is an efficient algorithm for this
(NP/NP-complete problems)

6. Exercises

• Show all edges and verticies of a 2x2 N-Puzzle.

• Demonstrate a scenario/game/model that forms an
implicit graph.

• Demonstrate why we use edges for explicit
representations of graphs. (Section 4.2)
21
 22

	CS211, Lecture 23
	Introduction to Graphs
	Announcements:
	Overview:
	1. Motivation
	1.1 The Gist
	1.2 Applications
	1.3 N-Puzzle Application

	2. Graphs
	2.1 Nodes
	2.2 Edges
	2.3 Graph
	2.4 Directed Graphs
	2.5 More Directed Graphs Terms
	2.6 Continuing Directed Graph Terms
	2.7 Cycles

	3. More Graph Types/Qualities
	3.1 Undirected Graphs
	3.2 Directed Acyclic Graphs
	3.3 Connected Graphs
	3.4 Complete Graphs
	3.5 Labeled Graphs
	3.6 Trees?
	3.7 Sparse and Dense Graphs

	4. Representations
	4.1 Implicit
	4.2 Explicit
	4.3 Adjacency Matrix
	4.4 Adjacency List
	4.5 graph types to develop:
	4.6 Undirected
	4.7 Directed
	4.8 Weighted
	4.9 Choice of AM or AL?

	5. Interesting Problems
	5.1 Paths
	5.2 Reachability
	5.3 Minimal Path
	5.4 Cycles

	6. Exercises

