
CS211, LECTURE 22
HIERARCHICAL SEQUENCE STRUCTURE

ANNOUNCEMENTS:

OVERVIEW:

• Motivation

• PQ

• Linear PQ

• Heaps

• PQ as Heap

• Array representation

1. Motivation

1.1 Sequence Structure Reminder

• want ADT to store and retrieve items

• use put and get to create and manipulate a pile of things

• not interested in search

1.2 Queues

• line things up, take them out in FIFO order

• weakness: what if some things are more important than
others?

• Analogies: patients needing emergency care, small and
large print jobs, office hours…

1.3 Priority Queues

• insert items in any order:
include a priority (numerical rating of importance)

• extract items according to priority

1.4 For later…

• some algorithms need to be broken into smaller tasks

• use PQs to prioritize which tasks occur early/later
2. Interface

interface SeqStructure {
void put(Object o);
Object get();
boolean isEmpty();
int size();

}

2.1 Operations

• put: insert items in any order…

• get: remove item with highest priority

- might see altenate ops: findMin or findMax
- return smallest/largest item means return highest/

lowest priority (“small” things usually go first)

2.2 Implementations

• linear: as array, as list

• hierarchical: as BST (better, splay tree), heap (special
kind of tree)

3. PQ Elements

• PQ Element has data (Object) and priority (int)

• kind of like a key-value pair

• design elements to be compared for priorities

• code:
public class PQElement implements Comparable {

private Object item;
private int priority;
public PQElement(Object o, int p) {

item = o;
priority = p;

}
public int getPriority() { return priority; }
public void setPriority(int p) { priority = p; }
public Object getItem() { return item; }
public String toString() {

 return  "("+item+","+priority+")"; }

// return pos means this.p > o.p
// return nil means this.p = o.p
// return neg means this.p < o.p
public int compareTo(Object o) {

if (o instanceof PQElement)
return (priority - ((PQElement)o).priority);

else {
System.out.println("Crap!");
return 0; // should really throw an Exception

}
}

} // Class PQElement
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4. Array Implementation

4.1 Very similar to SortedArray for searching

• but, must allow for duplicates

• sort in ascending order

• item with highest priority from end of array

• so,

- get: O(1)
- put: O(n)

• see PQAsSortedArray.java

4.2 Get

// get the rightmost item,
// because sorted in ascending order
// (want highest priority item):
public Object get() {

// check for empty PQ:
if (size == 0) {

System.out.println("Empty array error!");
return null;

}
return a[--size];

}

4.3 Put

• need to set cursor (current item) with binary search

• allow for repeats
// insert into right place in sorted array
// (ascending order):
public void put(Object o) {

if (size == MAXSIZE) {
System.out.println("Overflow error!");
return;

}
// set the cursor to point to insertion point:
boolean found = search(o);

// find leftmost object equal to o
// (could have repeats):
while (cursor > 0 &&

((PQElement)(a[cursor - 1])).compareTo(o) == 0)
cursor--;

// make room for new element by shifting
// elements to left of cursor
for (int i = size -1; i >= cursor;i--)

a[i+1] = a[i];

// insert new element:
a[cursor] = (PQElement) o;
size++;

}

5. List Implementation

5.1 Operations

• put: either store “randomly” (FIFO) or sort list:

- FIFO makes put easy, but get hard
- sorted list makes put work a lot to insert and set

cursors (same kind of cursors as array PQ) but get is
very easy

• get: see above

5.2 Implementations

• PQAsList: easy put, hard get

• PQAsListAlt: hard put, easy get

• either way, at least one operation is O(n)

5.3 Example from PQAsList

public class PQAsList implements SeqStructure{
// fields

public void put(Object o) {
list.add(o); size++; }

public Object get() {
if (isEmpty()) {

System.out.print("Empty!");
return null;

}

// search list, starting from head:
ListNode n = list.getHead();
Object max = n.getItem();
ListNode next = n.getNext();

// find and update max:
while (next != null) {

Object current = next.getItem();
int comp = ((Comparable)current).compareTo(max);
if (comp > 0) max = current;
next = next.getNext();

}

list.remove(max);
size--;
return max;

// methods
}
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6. Tree Implementation

6.1 Any other way to do this?

• array & list have O(n) at some point

• so maybe a search tree could help us?

6.2 Search Trees

• designed for searching (BST gives O(log n) on avg

- search is proportional to height (search path from root
to leaf)

- nodes = 2^height-1, so height = log[2](nodes+1)
- if BST is “bushy”, gives O(log n) time
- if BST is “skinny”, resembles list: O(n) time
- actually, there’s a lot more math involved here…

• problems:

- input not randomized (queues used for simulation)
- support more operations than really needed
- need to have “bushiness” of tree to get O(log n)

• something called a splay tree helps sometimes

• heap to the rescue!

7. Binary Trees Revisited

7.1 Special types of binary tree to define heap

• we need some tree definitions

• full binary tree: every node has two children

• complete binary tree: full binary tree, except…

- next-to-last level may be partially filled
- must fill last level from left to right

• full, complete help give “bushiness” to trees

full complete
8. Heap Types

8.1 heap: complete binary tree with ordering

• different kinds of ordering (min, max, min-max, …)

• not related to “the heap”

• use Comparable to achieve ordering

8.2 Specific heap types

• maxheap: object in a node ≥ all children

• minheap: object in a node ≤ all children

• min-max heap (and more): http://www.diku.dk/
forskning/performance-engineering/Jesper/heaplab/
heapsurvey_html/node1.html

8.3 Real Life Examples

• ages of people in family tree: parent is always older than
children (max heap), but you may have an uncle/aunt
younger than you

• people’s salaries: bosses make more than subordinates
(“pions”), but a 2nd-level manager may make more
money than a 1st-level manager in a different sub-
division

8.4 Min or Max for PQ?

• we’ll pick maxheap (DS&SD 18.6)

• why? want to find max priority item

• minheap has analogous operations (see DS&A, Chap
11)

8.5 Methods to implement

• put: add something to the heap, but must preserve the
heap property (min, max, min-max, …)

• get: remove largest item from the heap

8.6 Heapsort

• If we’re always pulling out the largest (or smallest) item,
then technically, we could use a heap for sorting!

• DS&SD go into heapsort (section 18.6)

maxheap
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9. Heap Operations

9.1 put

• method will insert item at first free node (left-bottom)

• must maintain heapness, so will have to reheapify

9.2 get

• want to remove max, which means root (uh oh!)

• tree could becomes forest! crap!

• but, we could “fix” (reheap) the heap

21 3

6 4

7

8

Get heap
Does it have enough space?
Find/create 1st empty location
See if item (8) goes there

21 3

6

7

4

8

Parent (4) is < item (8)
so, move parent to that empty
Now, compare item with parent

21 3

6 7

8

4

Parent (7) is < item (8)
so, move parent to that empty
Now, compare item with root
Nothing left to compare
Done.

21 3

6 7

4 Get max (root, which was 8)
Replace with 1st leaf (4)

21 3

6

7
4

Item (4) is > children

Delete (or nullify) that leaf
Want happy heap? Reheap!

Put item in current parent

21 3

6 4

7 Done!
Our heap is ready for more action.
9.3 create heap

• could use put, which gives O(n log n)

• better: reheap each internal node until reaching root:

10. Heaps and Arrays!

10.1 Number Nodes in Heap

10.2 Now, put items in array with indicies

10.3 Now, think BINARY TREE

• binary tree should somehow use powers of 2

• ex) size = 2^(h+1)-1 = 2^(2+1)-1 = 8-1 =7

64 5

2 3

1

start with not-heap

34 5

2 6

1

reheap child

34 2

5 6

1

reheap other child

34 2

5 6

1

reheap next level…whoops!

34 2

5 1

6

almost done!

14 2

5 3

6

done!

fd e
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10.4 Older files to check out:

• MaxHeap.java

• HeapDecoder.java

• TestMaxHeap.java

10.5 Interesting Features

• children of node i: 2i and 2i+1

• parent of node i (not root): i/2

• root: i/2=0, so i = 1

10.6 Binary Path

• find binary representation of a node number:

- formula:

- take number d, divide by 2
- remainders are

- ex) b0=6%2=0; b1=3%2=1; b2=1%2=0; so, 6→110

• drop leading 1 (if exists):

- pattern: 1 = R, 0 = L
- ex) 6 → 110, so to find node 6, go RK (10):

d bn 2
n× bn 1– 2

n 1– … b1 2
1× b0 2

0×+ + +×+=

b0 b1 … bn 1– bn, , , ,

fd e

b c

a

g

1

2 3

4 5 6 7
10.7 Example (put) 11. Maxheap Code

From MaxheapAsArray.java

See also PQAsMaxheapAsArray.java

11.1 Fields, Constructors

private Object[] heap;
private int MAXSIZE;
private int size; // gives pointer to last index in heap

public MaxheapAsArray(int size) {
MAXSIZE = size;
heap = new Object[MAXSIZE];

}

public MaxheapAsArray(Object[] stuff) {
// set # of elems and allotted space:
MAXSIZE = size = stuff.length+1;

// need to have empty 0th pos:
heap = new Object[MAXSIZE];

// copy stuff into unheaped heap:
System.arraycopy(stuff,0,heap,1,MAXSIZE);

// start at root and work "down"
for (int i = heap.length/2; i > 0; i--) reheap(i);

}

2010 30

60 40

70

80?

70 60 40 10 30 20

1 2 3 4 5 6 70

Want to insert item (80)
Locate free space (index 7)
Find parent 7/2=3→40

1

2 3

4 5 6 7

80 > 40?

70 60 80 10 30 20 40

1 2 3 4 5 6 70

80>40, so move 40 to index 7
Find parent: 3/2=1→70

80 > 70?

80 60 70 10 30 20 40

1 2 3 4 5 6 70

80>70, so move 80 to index 1
Find parent: 1/2=0
So, we reached root…done!

Want to put 80 into heap
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11.2 Put

public void put(Object o) {

size++; // increment size more this new item

// increase array if out of space
if (size > MAXSIZE) increaseHeapSize();

int index = size; // index of current free location
int parent = index/2; // parent of free location

// Until reaching root, move the parents down
// while item o > parents:
while (index > 1 &&

((Comparable) o).compareTo(heap[parent]) > 0) {

heap[index]=heap[parent]; // parent ->child
index = parent; // update index
parent = index/2; // update parent

}

// done finding appropriate location
// to maintain heapness:
heap[index] = o;

}

11.3 Get

public Object get() {
Object root = null;
if (!isEmpty()) {

root = heap[1]; // max item to return
heap[1]=heap[size]; // root<-recent item added
size--; // reduce size
reheap(1); // reheap entire tree

}
return root;

}

reheap? See MaxheapAsArray.java

11.4 PQ AS Maxheap (AsArray)

public class PQAsMaxheapAsArray {
public static void main(String[] args) {

SeqStructure pq = new MaxheapAsArray(10);
pq.put(new PQElement("Bill",3));
pq.put(new PQElement("Monica",1));
pq.put(new PQElement("Hillary",4));
pq.get());
pq.put(new PQElement("Gennifer",3));

}
}

12. Time analysis

12.1 Nodes and height

•

•

• so,

12.2 put

• height is

• adding does 1 level at a time, so O(log n)

12.3 get

• similar analysis as height

• O(log n)

13. Exercises

• Implement a PQ with a circular array.

• Implement a PQ with a sorted list. Allow for duplicate
items.

• Write toTree for HeapAsArray that produces a
text-based tree, as we did for you binary trees.

• Rewrite HeapAsArray’s put such that the unused
array position (index 0) stores the item. Doing so helps
to move the index > 1 test in the while loop.

• Write a heapsort method inside HeapAsArray.

n 2
h

1–=

h n 1+( )log=

h n 1+( )log=

n 1+( )log
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