CS211, LECTURE 22 1. Motivation
HIERARCHICAL SEQUENCE STRUCTURE .
Q 1.1 Sequence Structure Reminder
ANNOUNCEMENTS: . .
« want ADT to store and retrieve items
* use put and get to create and manipulate a pile of things
* not interested in search
1.2 Queues
OVERVIEW: * line things up, take them out in FIFO order
* Motivation - weakness: what if some things are more important than
* PQ others?
* Linear PQ » Analogies: patients needing emergency care, small and
« Heaps large print jobs, office hours...
* PQ as Heap 1.3 Priority Queues
* Array representation * insert items in any order:
include a priority (numerical rating of importance)
* extract items according to priority
1.4 For later...
» some algorithms need to be broken into smaller tasks
« use PQs to prioritize which tasks occur early/later
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2.  Interface 3. PQElements

interface SeqStructure {
voi d put (Cbject 0);
oj ect get();
bool ean i sEnpty();
int size();

}
2.1 Operations

* put : insert items in any order...
» get: remove item with highest priority

- might see altenate ops: f i ndM n or f i ndMax
- return smallest/largest item means return highest/
lowest priority (“small” things usually go first)

2.2 Implementations

* linear: as array, as list

* hierarchical: as BST (better, splay tree), heap (special
kind of tree)

* PQ Element has data (Obj ect ) and priority (i nt )
* kind of like a key-value pair
* design elements to be compared for priorities

e code:

public class PQEl ement inplenments Conparable {

private bject item
private int priority;
public PQEl ement (Object o, int p) {

item= o;

priority = p;
}
public int getPriority() { return priority; }
public void setPriority(int p) { priority =p; }
public Object getlten() { returnitem }
public String toString() {

return "("+item","+priority+")"; }

/1 return pos neans this.p
/1 return nil nmeans this.p
/1 return neg nmeans this.p
public int conpareTo(Object o)
if (o instanceof PQEl enent)
return (priority - ((PQElenent)o).priority);
el se {
Systemout.println("Crap!");
return 0; // should really throw an Exception
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} /1 dass PCQEl enent




Array Implementation
41 Very similar to Sor t edAr r ay for searching

* but, must allow for duplicates
* sort in ascending order
* item with highest priority from end of array
* 50,
- get: O(1)
- put: O(n)
+ see PQAsSor t edArray. j ava

4.2 Get

/'l get the rightnost item
/'l because sorted in ascending order
/1 (want highest priority item:
public Cbject get() {
/'l check for enpty PQ
if (size == 0) {
Systemout.println("Enpty array error!");
return null;
}

return a[--sizel;

4.3 Put

* need to set cursor (current item) with binary search

+ allow for repeats

// insert into right place in sorted array
/1 (ascending order):
public void put(Ooject o) {
if (size == MAXSI ZE) {
Systemout.println("Overflow error!");
return;

/1l set the cursor to point to insertion point:
bool ean found = search(o);

/1 find | eftnost object equal to o

/1 (could have repeats):

while (cursor > 0 &&
((PQEl ement) (a[cursor - 1])).conpareTo(o) == 0)
cursor--;

/1 make room for new el ement by shifting
/1 elements to left of cursor
for (int i =size -1; i >= cursor;i--)
a[i+1] = a[i];
/1 insert new el enent:

a[cursor] = (PQEl enent) o;

Si ze++;

5. List Implementation
5.1 Operations

* put: either store “randomly” (FIFO) or sort list:

- FIFO makes put easy, but get hard

- sorted list makes put work a lot to insert and set
cursors (same kind of cursors as array PQ) but get is
very easy

* get : see above
5.2 Implementations
* PQAsLi st : easy put, hard get
* PQAsLi st Al t : hard put, easy get

+ cither way, at least one operation is O(#n)

5.3 Example from PQAsList

public class PQAsList inplenents SeqStructure{
/1 fields

public void put(Qoject o) {
list.add(o); size++; }

public Object get() {
if (isEmpty()) {
Systemout. print("Enmpty!");

return null;
}
/1 search list, starting from head:
Li st Node n = |ist.getHead();

Obj ect max = n.getlten();
Li st Node next = n.getNext();

/1 find and update max:
while (next !'= null) {
Obj ect current = next.getltemn();
int conp = ((Conparable)current).conpareTo(nmax);
if (comp > 0) nmax = current;
next = next.getNext();
}
list.renove(max);
si ze--;
return naex;

/1 met hods




Tree Implementation 7. Binary Trees Revisited
6.1  Any other way to do this? 7.1 Special types of binary tree to define heap
* array & list have O(n) at some point » we need some tree definitions
* so maybe a search tree could help us? o full binary tree: every node has two children
6.2 Search Trees * complete binary tree: full binary tree, except...
. . . . - next-to-last level may be partially filled
demgne: .for searcl?lng I(le;r glzes O(loﬁ ") (;lnfan - must fill last level from left to right
i :sa}z;ﬂls proportional to height (search path from root « full, complete help give “bushiness” to trees
- nodes = 2"height-1, so height = log[2](nodes+1)
- if BST is “bushy”, gives O(log n) time
- if BST is “skinny”, resembles list: O(#) time
- actually, there’s a lot more math involved here...
* problems:
- input not randomized (queues used for simulation)
. full complete
- support more operations than really needed
- need to have “bushiness” of tree to get O(log n)
» something called a splay tree helps sometimes
* heap to the rescue!
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8. Heap Types 8.3 Real Life Examples
8.1  heap: complete binary tree with ordering * ages of people in family tree: parent is always older than
+ different kinds of ordering (min, max, min-max, ...) children (max heap), but you may have an uncle/aunt
younger than you
* not related to “the heap” s . .
) ) * people’s salaries: bosses make more than subordinates
* use Conpar abl e to achieve ordering (“pions™), but a 2nd-level manager may make more
8.2 Specific heap types money than a 1st-level manager in a different sub-
division
* maxheap: object in a node = all children
. S . 8.4 Min or Max for PQ?
* minheap: object in a node < all children
* min-max heap (and more): http://www.diku.dk/ * we’ll pick maxheap (DS&SD 18.6)
forskning/performance-engineering/Jesper/heaplab/ * why? want to find max priority item
heapsurvey_html/nodel.html » minheap has analogous operations (see DS&A, Chap
11)
8.5 Methods to implement
* put : add something to the heap, but must preserve the
heap property (min, max, min-max, ...)
* get : remove largest item from the heap
8.6 Heapsort

maxheap

minheap

» If we’re always pulling out the largest (or smallest) item,
then technically, we could use a heap for sorting!

* DS&SD go into heapsort (section 18.6)

1"

12




Heap Operations

9.2

get

9.1 put + want to remove max, which means root (uh oh!)
 method will insert item at first free node (left-bottom) + tree could becomes forest! crap!
* must maintain heapness, so will have to reheapify * but, we could “fix” (reheap) the heap
e Get heap ° Get max (root, which was 8)
Does it have enough space? ng?:?o\;vgzlﬂfsyt) Iterfgt(lltta)af
(8 V&) Enerete st amel locaton B D Wakhaeyheap? Rohean
@@ @ Os ®» G @
(M) Parent (4) is < item (8) (7) Item (4) is > children
s0, move parent to that empty 4 Put item in current parent
e ‘ 8 Now, compare item with parent G ‘
(8) Parent (7) is < item (8) (7) Done! .
s0, move parent o that empty ur heap is ready for more action.
e 0 Now, compare item with root e 0
Nothing left to compare
o 9 e 0 Done. o e e
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9.3 create heap 10. Heaps and Arrays!
* could use put , which gives O(n log n) 10.1 Number Nodes in Heap
* better: reheap each internal node until reaching root:
) ®» —» (2 (o
start with not-heap reheap child 10.2 Now, put items in array with indicies
o @ (EBEEET
0O 1 2 3 4 5 6 7
() & —» () (o
ORONO, @& ® G 10.3 Now, think BINARY TREE

® / ®)
o i, & B
@@ & ® @ O

almost done! done!

reheap next level...whoops!

* binary tree should somehow use powers of 2
* ex) size = 2(h+1)-1 =2"(2+1)-1 =8-1 =7
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10.4 Older files to check out:
* MaxHeap. j ava
* HeapDecoder.j ava
» Test MaxHeap. j ava
10.5 Interesting Features
* children of node i: 2i and 2i+1

* parent of node i (not root): i/2

e root: i/2=0,s01=1

10.6 Binary Path

+ find binary representation of a node number:
- formula:
d=b,x2"+b  x2""
- take number d, divide by 2
- remainders are b, by, ...,b, _;,b,

- ex) b0=6%2=0; b1=3%2=1; b2=1%2=0; so, 6 - 110

* drop leading 1 (if exists):

- pattern: 1 =R,0=L
- ex) 6 — 110, so to find node 6, go RK (10):

Yt by x2 by x2°
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10.7 Example (put)

Want to put 80 into heap

80 > 40?
‘ [70[60[40[10[30[20[ \ ‘ Want to insert item (80)
Locate free space (index 7)
01 2 3 45 67 Find parent 7/2=3_40
80 >70?

| [7o[e0[80]10[30[20[40] 8040, so move 40 to index 7
012 3 45 6 7 Find parent: 3/2=1-70

[ [so[60[70[10[30]20[40] ~ 80>70, S0 move 80 to index 1
Find parent: 1/2=0
01 2 3 45 67 So, we reached root...done!

11. Maxheap Code
From MaxheapAsArray. j ava
See also PQAsMaxheapAsArray. j ava

11.1 Fields, Constructors

private Cbject[] heap;
private int MAXSI ZE;
private int size; // gives pointer to last index in heap

publ i c MaxheapAsArray(int size) {
MAXSI ZE = si ze;
heap = new Obj ect [ MAXSI ZE] ;

publi c MaxheapAsArray(Qoject[] stuff) {
/1 set # of elens and allotted space:
MAXSI ZE = size = stuff.length+l;

/1 need to have enpty Oth pos:
heap = new Obj ect [ MAXSI ZE] ;

/1 copy stuff into unheaped heap:
System arraycopy(stuff, 0, heap, 1, MAXSI ZE) ;

// start at root and work "down"
for (int i = heap.length/2; i > 0; i--) reheap(i);
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11.2 Put
public void put(Object o) {
size++; // increnment size nore this newitem

/1 increase array if out of space
if (size > MAXSI ZE) increaseHeapSi ze();

int index = size; // index of current free |ocation
int parent = index/2; // parent of free |ocation

/1 Until reaching root, nove the parents down
/'l while itemo > parents:
while (index > 1 &&
((Conpar abl e) 0).conpareTo(heap[parent]) > 0) {

heap[i ndex] =heap[ parent]; // parent ->child
i ndex = parent; /'l update index
parent = index/2; /'l update parent

}

/1 done finding appropriate |ocation
/1 to maintain heapness:
heap[ i ndex] = o;

11.3 Get

public Object get() {

Obj ect root = null;
if (lisEmty()) {

root = heap[1]; /] max itemto return
heap[ 1] =heap[si ze]; // root<-recent item added
si ze--; /1 reduce size

reheap(1); /1 reheap entire tree

return root;

reheap? See MaxheapAsArray. j ava
11.4 PQ AS Maxheap (AsArray)

public class PQAsMaxheapAsArray {

public static void main(String[] args) {

SeqStructure pg = new MaxheapAsArray(10);
pg. put (new PQEl ement ("Bill",3));

pg. put (new PQEl enent (" Monica", 1));

pq. put (new PQEl ement ("Hillary", 4));

pa. get());

pg. put (new PQEl ement (" Gennifer", 3));
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12. Time analysis
12.1 Nodes and height

2"

*n
* h=log(n+1)
* 50, h = log(n+1)
12.2 put
* height is log(n + 1)
* adding does 1 level at a time, so O(log n)
12.3 get

* similar analysis as height
* O(log n)

13.

Exercises

* Implement a PQ with a circular array.

» Implement a PQ with a sorted list. Allow for duplicate
items.

* Write t oTr ee for HeapAsAr r ay that produces a
text-based tree, as we did for you binary trees.

* Rewrite HeapAsAr r ay’s put such that the unused
array position (index 0) stores the item. Doing so helps
to move the i ndex > 1 testin the whi | e loop.

» Write a heapsort method inside HeapAsAr r ay.
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