
CS211, LECTURE 22
HIERARCHICAL SEQUENCE STRUCTURE

ANNOUNCEMENTS:

OVERVIEW:

• Motivation

• PQ

• Linear PQ

• Heaps

• PQ as Heap

• Array representation

1. Motivation

1.1 Sequence Structure Reminder

• want ADT to store and retrieve items

• use put and get to create and manipulate a pile of things

• not interested in search

1.2 Queues

• line things up, take them out in FIFO order

• weakness: what if some things are more important than
others?

• Analogies: patients needing emergency care, small and
large print jobs, office hours…

1.3 Priority Queues

• insert items in any order:
include a priority (numerical rating of importance)

• extract items according to priority

1.4 For later…

• some algorithms need to be broken into smaller tasks

• use PQs to prioritize which tasks occur early/later
2. Interface

interface SeqStructure {
void put(Object o);
Object get();
boolean isEmpty();
int size();

}

2.1 Operations

• put: insert items in any order…

• get: remove item with highest priority

- might see altenate ops: findMin or findMax
- return smallest/largest item means return highest/

lowest priority (“small” things usually go first)

2.2 Implementations

• linear: as array, as list

• hierarchical: as BST (better, splay tree), heap (special
kind of tree)

3. PQ Elements

• PQ Element has data (Object) and priority (int)

• kind of like a key-value pair

• design elements to be compared for priorities

• code:
public class PQElement implements Comparable {

private Object item;
private int priority;
public PQElement(Object o, int p) {

item = o;
priority = p;

}
public int getPriority() { return priority; }
public void setPriority(int p) { priority = p; }
public Object getItem() { return item; }
public String toString() {

 return "("+item+","+priority+")"; }

// return pos means this.p > o.p
// return nil means this.p = o.p
// return neg means this.p < o.p
public int compareTo(Object o) {

if (o instanceof PQElement)
return (priority - ((PQElement)o).priority);

else {
System.out.println("Crap!");
return 0; // should really throw an Exception

}
}

} // Class PQElement
1
 2
3
 4

4. Array Implementation

4.1 Very similar to SortedArray for searching

• but, must allow for duplicates

• sort in ascending order

• item with highest priority from end of array

• so,

- get: O(1)
- put: O(n)

• see PQAsSortedArray.java

4.2 Get

// get the rightmost item,
// because sorted in ascending order
// (want highest priority item):
public Object get() {

// check for empty PQ:
if (size == 0) {

System.out.println("Empty array error!");
return null;

}
return a[--size];

}

4.3 Put

• need to set cursor (current item) with binary search

• allow for repeats
// insert into right place in sorted array
// (ascending order):
public void put(Object o) {

if (size == MAXSIZE) {
System.out.println("Overflow error!");
return;

}
// set the cursor to point to insertion point:
boolean found = search(o);

// find leftmost object equal to o
// (could have repeats):
while (cursor > 0 &&

((PQElement)(a[cursor - 1])).compareTo(o) == 0)
cursor--;

// make room for new element by shifting
// elements to left of cursor
for (int i = size -1; i >= cursor;i--)

a[i+1] = a[i];

// insert new element:
a[cursor] = (PQElement) o;
size++;

}

5. List Implementation

5.1 Operations

• put: either store “randomly” (FIFO) or sort list:

- FIFO makes put easy, but get hard
- sorted list makes put work a lot to insert and set

cursors (same kind of cursors as array PQ) but get is
very easy

• get: see above

5.2 Implementations

• PQAsList: easy put, hard get

• PQAsListAlt: hard put, easy get

• either way, at least one operation is O(n)

5.3 Example from PQAsList

public class PQAsList implements SeqStructure{
// fields

public void put(Object o) {
list.add(o); size++; }

public Object get() {
if (isEmpty()) {

System.out.print("Empty!");
return null;

}

// search list, starting from head:
ListNode n = list.getHead();
Object max = n.getItem();
ListNode next = n.getNext();

// find and update max:
while (next != null) {

Object current = next.getItem();
int comp = ((Comparable)current).compareTo(max);
if (comp > 0) max = current;
next = next.getNext();

}

list.remove(max);
size--;
return max;

// methods
}

5
 6
7
 8

6. Tree Implementation

6.1 Any other way to do this?

• array & list have O(n) at some point

• so maybe a search tree could help us?

6.2 Search Trees

• designed for searching (BST gives O(log n) on avg

- search is proportional to height (search path from root
to leaf)

- nodes = 2^height-1, so height = log[2](nodes+1)
- if BST is “bushy”, gives O(log n) time
- if BST is “skinny”, resembles list: O(n) time
- actually, there’s a lot more math involved here…

• problems:

- input not randomized (queues used for simulation)
- support more operations than really needed
- need to have “bushiness” of tree to get O(log n)

• something called a splay tree helps sometimes

• heap to the rescue!

7. Binary Trees Revisited

7.1 Special types of binary tree to define heap

• we need some tree definitions

• full binary tree: every node has two children

• complete binary tree: full binary tree, except…

- next-to-last level may be partially filled
- must fill last level from left to right

• full, complete help give “bushiness” to trees

full complete
8. Heap Types

8.1 heap: complete binary tree with ordering

• different kinds of ordering (min, max, min-max, …)

• not related to “the heap”

• use Comparable to achieve ordering

8.2 Specific heap types

• maxheap: object in a node ≥ all children

• minheap: object in a node ≤ all children

• min-max heap (and more): http://www.diku.dk/
forskning/performance-engineering/Jesper/heaplab/
heapsurvey_html/node1.html

8.3 Real Life Examples

• ages of people in family tree: parent is always older than
children (max heap), but you may have an uncle/aunt
younger than you

• people’s salaries: bosses make more than subordinates
(“pions”), but a 2nd-level manager may make more
money than a 1st-level manager in a different sub-
division

8.4 Min or Max for PQ?

• we’ll pick maxheap (DS&SD 18.6)

• why? want to find max priority item

• minheap has analogous operations (see DS&A, Chap
11)

8.5 Methods to implement

• put: add something to the heap, but must preserve the
heap property (min, max, min-max, …)

• get: remove largest item from the heap

8.6 Heapsort

• If we’re always pulling out the largest (or smallest) item,
then technically, we could use a heap for sorting!

• DS&SD go into heapsort (section 18.6)

maxheap

9

8 7

5 1 2 3

4

minheap

1

2 3

5 4 8 9

7

9
 10
11
 12

9. Heap Operations

9.1 put

• method will insert item at first free node (left-bottom)

• must maintain heapness, so will have to reheapify

9.2 get

• want to remove max, which means root (uh oh!)

• tree could becomes forest! crap!

• but, we could “fix” (reheap) the heap

21 3

6 4

7

8

Get heap
Does it have enough space?
Find/create 1st empty location
See if item (8) goes there

21 3

6

7

4

8

Parent (4) is < item (8)
so, move parent to that empty
Now, compare item with parent

21 3

6 7

8

4

Parent (7) is < item (8)
so, move parent to that empty
Now, compare item with root
Nothing left to compare
Done.

21 3

6 7

4 Get max (root, which was 8)
Replace with 1st leaf (4)

21 3

6

7
4

Item (4) is > children

Delete (or nullify) that leaf
Want happy heap? Reheap!

Put item in current parent

21 3

6 4

7 Done!
Our heap is ready for more action.
9.3 create heap

• could use put, which gives O(n log n)

• better: reheap each internal node until reaching root:

10. Heaps and Arrays!

10.1 Number Nodes in Heap

10.2 Now, put items in array with indicies

10.3 Now, think BINARY TREE

• binary tree should somehow use powers of 2

• ex) size = 2^(h+1)-1 = 2^(2+1)-1 = 8-1 =7

64 5

2 3

1

start with not-heap

34 5

2 6

1

reheap child

34 2

5 6

1

reheap other child

34 2

5 6

1

reheap next level…whoops!

34 2

5 1

6

almost done!

14 2

5 3

6

done!

fd e

b c

a

g

1

2 3

4 5 6 7

a b c d e f g

1 2 3 4 5 6 70
13
 14
15
 16

10.4 Older files to check out:

• MaxHeap.java

• HeapDecoder.java

• TestMaxHeap.java

10.5 Interesting Features

• children of node i: 2i and 2i+1

• parent of node i (not root): i/2

• root: i/2=0, so i = 1

10.6 Binary Path

• find binary representation of a node number:

- formula:

- take number d, divide by 2
- remainders are

- ex) b0=6%2=0; b1=3%2=1; b2=1%2=0; so, 6→110

• drop leading 1 (if exists):

- pattern: 1 = R, 0 = L
- ex) 6 → 110, so to find node 6, go RK (10):

d bn 2
n× bn 1– 2

n 1– … b1 2
1× b0 2

0×+ + +×+=

b0 b1 … bn 1– bn, , , ,

fd e

b c

a

g

1

2 3

4 5 6 7
10.7 Example (put) 11. Maxheap Code

From MaxheapAsArray.java

See also PQAsMaxheapAsArray.java

11.1 Fields, Constructors

private Object[] heap;
private int MAXSIZE;
private int size; // gives pointer to last index in heap

public MaxheapAsArray(int size) {
MAXSIZE = size;
heap = new Object[MAXSIZE];

}

public MaxheapAsArray(Object[] stuff) {
// set # of elems and allotted space:
MAXSIZE = size = stuff.length+1;

// need to have empty 0th pos:
heap = new Object[MAXSIZE];

// copy stuff into unheaped heap:
System.arraycopy(stuff,0,heap,1,MAXSIZE);

// start at root and work "down"
for (int i = heap.length/2; i > 0; i--) reheap(i);

}

2010 30

60 40

70

80?

70 60 40 10 30 20

1 2 3 4 5 6 70

Want to insert item (80)
Locate free space (index 7)
Find parent 7/2=3→40

1

2 3

4 5 6 7

80 > 40?

70 60 80 10 30 20 40

1 2 3 4 5 6 70

80>40, so move 40 to index 7
Find parent: 3/2=1→70

80 > 70?

80 60 70 10 30 20 40

1 2 3 4 5 6 70

80>70, so move 80 to index 1
Find parent: 1/2=0
So, we reached root…done!

Want to put 80 into heap
17
 18
19
 20

11.2 Put

public void put(Object o) {

size++; // increment size more this new item

// increase array if out of space
if (size > MAXSIZE) increaseHeapSize();

int index = size; // index of current free location
int parent = index/2; // parent of free location

// Until reaching root, move the parents down
// while item o > parents:
while (index > 1 &&

((Comparable) o).compareTo(heap[parent]) > 0) {

heap[index]=heap[parent]; // parent ->child
index = parent; // update index
parent = index/2; // update parent

}

// done finding appropriate location
// to maintain heapness:
heap[index] = o;

}

11.3 Get

public Object get() {
Object root = null;
if (!isEmpty()) {

root = heap[1]; // max item to return
heap[1]=heap[size]; // root<-recent item added
size--; // reduce size
reheap(1); // reheap entire tree

}
return root;

}

reheap? See MaxheapAsArray.java

11.4 PQ AS Maxheap (AsArray)

public class PQAsMaxheapAsArray {
public static void main(String[] args) {

SeqStructure pq = new MaxheapAsArray(10);
pq.put(new PQElement("Bill",3));
pq.put(new PQElement("Monica",1));
pq.put(new PQElement("Hillary",4));
pq.get());
pq.put(new PQElement("Gennifer",3));

}
}

12. Time analysis

12.1 Nodes and height

•

•

• so,

12.2 put

• height is

• adding does 1 level at a time, so O(log n)

12.3 get

• similar analysis as height

• O(log n)

13. Exercises

• Implement a PQ with a circular array.

• Implement a PQ with a sorted list. Allow for duplicate
items.

• Write toTree for HeapAsArray that produces a
text-based tree, as we did for you binary trees.

• Rewrite HeapAsArray’s put such that the unused
array position (index 0) stores the item. Doing so helps
to move the index > 1 test in the while loop.

• Write a heapsort method inside HeapAsArray.

n 2
h

1–=

h n 1+()log=

h n 1+()log=

n 1+()log
21
 22
23
 24

	CS211, Lecture 22
	Hierarchical Sequence Structure
	Announcements:
	Overview:
	1. Motivation
	1.1 Sequence Structure Reminder
	1.2 Queues
	1.3 Priority Queues
	1.4 For later…

	2. Interface
	2.1 Operations
	2.2 Implementations

	3. PQ Elements
	4. Array Implementation
	4.1 Very similar to SortedArray for searching
	4.2 Get
	4.3 Put

	5. List Implementation
	5.1 Operations
	5.2 Implementations
	5.3 Example from PQAsList

	6. Tree Implementation
	6.1 Any other way to do this?
	6.2 Search Trees

	7. Binary Trees Revisited
	7.1 Special types of binary tree to define heap

	8. Heap Types
	8.1 heap: complete binary tree with ordering
	8.2 Specific heap types
	8.3 Real Life Examples
	8.4 Min or Max for PQ?
	8.5 Methods to implement
	8.6 Heapsort

	9. Heap Operations
	9.1 put
	9.2 get
	9.3 create heap

	10. Heaps and Arrays!
	10.1 Number Nodes in Heap
	10.2 Now, put items in array with indicies
	10.3 Now, think BINARY TREE
	10.4 Older files to check out:
	10.5 Interesting Features
	10.6 Binary Path
	10.7 Example (put)

	11. Maxheap Code
	11.1 Fields, Constructors
	11.2 Put
	11.3 Get
	11.4 PQ AS Maxheap (AsArray)

	12. Time analysis
	12.1 Nodes and height
	12.2 put
	12.3 get

	13. Exercises

