CS211, LECTURE 22 1. Motivation
HIERARCHICAL SEQUENCE STRUCTURE .
Q 1.1 Sequence Structure Reminder
ANNOUNCEMENTS: . .
« want ADT to store and retrieve items
* use put and get to create and manipulate a pile of things
* not interested in search
1.2 Queues
OVERVIEW: * line things up, take them out in FIFO order
* Motivation - weakness: what if some things are more important than
* PQ others?
* Linear PQ » Analogies: patients needing emergency care, small and
« Heaps large print jobs, office hours...
* PQ as Heap 1.3 Priority Queues
* Array representation * insert items in any order:
include a priority (numerical rating of importance)
* extract items according to priority
1.4 For later...
» some algorithms need to be broken into smaller tasks
« use PQs to prioritize which tasks occur early/later
1 2
2.  Interface 3. PQElements

interface SeqStructure {
voi d put (Cbject 0);
oj ect get();
bool ean i sEnpty();
int size();

}
2.1 Operations

* put : insert items in any order...
» get: remove item with highest priority

- might see altenate ops: f i ndM n or f i ndMax
- return smallest/largest item means return highest/
lowest priority (“small” things usually go first)

2.2 Implementations

* linear: as array, as list

* hierarchical: as BST (better, splay tree), heap (special
kind of tree)

* PQ Element has data (Obj ect ) and priority (i nt )
* kind of like a key-value pair
* design elements to be compared for priorities

e code:

public class PQEl ement inplenments Conparable {

private bject item
private int priority;
public PQEl ement (Object o, int p) {

item= o;

priority = p;
}
public int getPriority() { return priority; }
public void setPriority(int p) { priority =p; }
public Object getlten() { returnitem }
public String toString() {

return "("+item","+priority+")"; }

/1 return pos neans this.p
/1 return nil nmeans this.p
/1 return neg nmeans this.p
public int conpareTo(Object o)
if (o instanceof PQEl enent)
return (priority - ((PQElenent)o).priority);
el se {
Systemout.println("Crap!");
return 0; // should really throw an Exception

ALV
ooo

-P
-P
-P

{

}

}
} /1 dass PCQEl enent




Array Implementation
41 Very similar to Sor t edAr r ay for searching

* but, must allow for duplicates
* sort in ascending order
* item with highest priority from end of array
* 50,
- get: O(1)
- put: O(n)
+ see PQAsSor t edArray. j ava

4.2 Get

/'l get the rightnost item
/'l because sorted in ascending order
/1 (want highest priority item:
public Cbject get() {
/'l check for enpty PQ
if (size == 0) {
Systemout.println("Enpty array error!");
return null;
}

return a[--sizel;

4.3 Put

* need to set cursor (current item) with binary search

+ allow for repeats

// insert into right place in sorted array
/1 (ascending order):
public void put(Ooject o) {
if (size == MAXSI ZE) {
Systemout.println("Overflow error!");
return;

/1l set the cursor to point to insertion point:
bool ean found = search(o);

/1 find | eftnost object equal to o

/1 (could have repeats):

while (cursor > 0 &&
((PQEl ement) (a[cursor - 1])).conpareTo(o) == 0)
cursor--;

/1 make room for new el ement by shifting
/1 elements to left of cursor
for (int i =size -1; i >= cursor;i--)
a[i+1] = a[i];
/1 insert new el enent:

a[cursor] = (PQEl enent) o;

Si ze++;

5. List Implementation
5.1 Operations

* put: either store “randomly” (FIFO) or sort list:

- FIFO makes put easy, but get hard

- sorted list makes put work a lot to insert and set
cursors (same kind of cursors as array PQ) but get is
very easy

* get : see above
5.2 Implementations
* PQAsLi st : easy put, hard get
* PQAsLi st Al t : hard put, easy get

+ cither way, at least one operation is O(#n)

5.3 Example from PQAsList

public class PQAsList inplenents SeqStructure{
/1 fields

public void put(Qoject o) {
list.add(o); size++; }

public Object get() {
if (isEmpty()) {
Systemout. print("Enmpty!");

return null;
}
/1 search list, starting from head:
Li st Node n = |ist.getHead();

Obj ect max = n.getlten();
Li st Node next = n.getNext();

/1 find and update max:
while (next !'= null) {
Obj ect current = next.getltemn();
int conp = ((Conparable)current).conpareTo(nmax);
if (comp > 0) nmax = current;
next = next.getNext();
}
list.renove(max);
si ze--;
return naex;

/1 met hods




Tree Implementation 7. Binary Trees Revisited
6.1  Any other way to do this? 7.1 Special types of binary tree to define heap
* array & list have O(n) at some point » we need some tree definitions
* so maybe a search tree could help us? o full binary tree: every node has two children
6.2 Search Trees * complete binary tree: full binary tree, except...
. . . . - next-to-last level may be partially filled
demgne: .for searcl?lng I(le;r glzes O(loﬁ ") (;lnfan - must fill last level from left to right
i :sa}z;ﬂls proportional to height (search path from root « full, complete help give “bushiness” to trees
- nodes = 2"height-1, so height = log[2](nodes+1)
- if BST is “bushy”, gives O(log n) time
- if BST is “skinny”, resembles list: O(#) time
- actually, there’s a lot more math involved here...
* problems:
- input not randomized (queues used for simulation)
. full complete
- support more operations than really needed
- need to have “bushiness” of tree to get O(log n)
» something called a splay tree helps sometimes
* heap to the rescue!
9 10
8. Heap Types 8.3 Real Life Examples
8.1  heap: complete binary tree with ordering * ages of people in family tree: parent is always older than
+ different kinds of ordering (min, max, min-max, ...) children (max heap), but you may have an uncle/aunt
younger than you
* not related to “the heap” s . .
) ) * people’s salaries: bosses make more than subordinates
* use Conpar abl e to achieve ordering (“pions™), but a 2nd-level manager may make more
8.2 Specific heap types money than a 1st-level manager in a different sub-
division
* maxheap: object in a node = all children
. S . 8.4 Min or Max for PQ?
* minheap: object in a node < all children
* min-max heap (and more): http://www.diku.dk/ * we’ll pick maxheap (DS&SD 18.6)
forskning/performance-engineering/Jesper/heaplab/ * why? want to find max priority item
heapsurvey_html/nodel.html » minheap has analogous operations (see DS&A, Chap
11)
8.5 Methods to implement
* put : add something to the heap, but must preserve the
heap property (min, max, min-max, ...)
* get : remove largest item from the heap
8.6 Heapsort

maxheap

minheap

» If we’re always pulling out the largest (or smallest) item,
then technically, we could use a heap for sorting!

* DS&SD go into heapsort (section 18.6)

1"

12




Heap Operations

9.2

get

9.1 put + want to remove max, which means root (uh oh!)
 method will insert item at first free node (left-bottom) + tree could becomes forest! crap!
* must maintain heapness, so will have to reheapify * but, we could “fix” (reheap) the heap
e Get heap ° Get max (root, which was 8)
Does it have enough space? ng?:?o\;vgzlﬂfsyt) Iterfgt(lltta)af
(8 V&) Enerete st amel locaton B D Wakhaeyheap? Rohean
@@ @ Os ®» G @
(M) Parent (4) is < item (8) (7) Item (4) is > children
s0, move parent to that empty 4 Put item in current parent
e ‘ 8 Now, compare item with parent G ‘
(8) Parent (7) is < item (8) (7) Done! .
s0, move parent o that empty ur heap is ready for more action.
e 0 Now, compare item with root e 0
Nothing left to compare
o 9 e 0 Done. o e e
13 14
9.3 create heap 10. Heaps and Arrays!
* could use put , which gives O(n log n) 10.1 Number Nodes in Heap
* better: reheap each internal node until reaching root:
) ®» —» (2 (o
start with not-heap reheap child 10.2 Now, put items in array with indicies
o @ (EBEEET
0O 1 2 3 4 5 6 7
() & —» () (o
ORONO, @& ® G 10.3 Now, think BINARY TREE

® / ®)
o i, & B
@@ & ® @ O

almost done! done!

reheap next level...whoops!

* binary tree should somehow use powers of 2
* ex) size = 2(h+1)-1 =2"(2+1)-1 =8-1 =7

15

16




10.4 Older files to check out:
* MaxHeap. j ava
* HeapDecoder.j ava
» Test MaxHeap. j ava
10.5 Interesting Features
* children of node i: 2i and 2i+1

* parent of node i (not root): i/2

e root: i/2=0,s01=1

10.6 Binary Path

+ find binary representation of a node number:
- formula:
d=b,x2"+b  x2""
- take number d, divide by 2
- remainders are b, by, ...,b, _;,b,

- ex) b0=6%2=0; b1=3%2=1; b2=1%2=0; so, 6 - 110

* drop leading 1 (if exists):

- pattern: 1 =R,0=L
- ex) 6 — 110, so to find node 6, go RK (10):

Yt by x2 by x2°

17

18

10.7 Example (put)

Want to put 80 into heap

80 > 40?
‘ [70[60[40[10[30[20[ \ ‘ Want to insert item (80)
Locate free space (index 7)
01 2 3 45 67 Find parent 7/2=3_40
80 >70?

| [7o[e0[80]10[30[20[40] 8040, so move 40 to index 7
012 3 45 6 7 Find parent: 3/2=1-70

[ [so[60[70[10[30]20[40] ~ 80>70, S0 move 80 to index 1
Find parent: 1/2=0
01 2 3 45 67 So, we reached root...done!

11. Maxheap Code
From MaxheapAsArray. j ava
See also PQAsMaxheapAsArray. j ava

11.1 Fields, Constructors

private Cbject[] heap;
private int MAXSI ZE;
private int size; // gives pointer to last index in heap

publ i c MaxheapAsArray(int size) {
MAXSI ZE = si ze;
heap = new Obj ect [ MAXSI ZE] ;

publi c MaxheapAsArray(Qoject[] stuff) {
/1 set # of elens and allotted space:
MAXSI ZE = size = stuff.length+l;

/1 need to have enpty Oth pos:
heap = new Obj ect [ MAXSI ZE] ;

/1 copy stuff into unheaped heap:
System arraycopy(stuff, 0, heap, 1, MAXSI ZE) ;

// start at root and work "down"
for (int i = heap.length/2; i > 0; i--) reheap(i);

19

20




11.2 Put
public void put(Object o) {
size++; // increnment size nore this newitem

/1 increase array if out of space
if (size > MAXSI ZE) increaseHeapSi ze();

int index = size; // index of current free |ocation
int parent = index/2; // parent of free |ocation

/1 Until reaching root, nove the parents down
/'l while itemo > parents:
while (index > 1 &&
((Conpar abl e) 0).conpareTo(heap[parent]) > 0) {

heap[i ndex] =heap[ parent]; // parent ->child
i ndex = parent; /'l update index
parent = index/2; /'l update parent

}

/1 done finding appropriate |ocation
/1 to maintain heapness:
heap[ i ndex] = o;

11.3 Get

public Object get() {

Obj ect root = null;
if (lisEmty()) {

root = heap[1]; /] max itemto return
heap[ 1] =heap[si ze]; // root<-recent item added
si ze--; /1 reduce size

reheap(1); /1 reheap entire tree

return root;

reheap? See MaxheapAsArray. j ava
11.4 PQ AS Maxheap (AsArray)

public class PQAsMaxheapAsArray {

public static void main(String[] args) {

SeqStructure pg = new MaxheapAsArray(10);
pg. put (new PQEl ement ("Bill",3));

pg. put (new PQEl enent (" Monica", 1));

pq. put (new PQEl ement ("Hillary", 4));

pa. get());

pg. put (new PQEl ement (" Gennifer", 3));

21

22

12. Time analysis
12.1 Nodes and height

2"

*n
* h=log(n+1)
* 50, h = log(n+1)
12.2 put
* height is log(n + 1)
* adding does 1 level at a time, so O(log n)
12.3 get

* similar analysis as height
* O(log n)

13.

Exercises

* Implement a PQ with a circular array.

» Implement a PQ with a sorted list. Allow for duplicate
items.

* Write t oTr ee for HeapAsAr r ay that produces a
text-based tree, as we did for you binary trees.

* Rewrite HeapAsAr r ay’s put such that the unused
array position (index 0) stores the item. Doing so helps
to move the i ndex > 1 testin the whi | e loop.

» Write a heapsort method inside HeapAsAr r ay.

23

24




	CS211, Lecture 22
	Hierarchical Sequence Structure
	Announcements:
	Overview:
	1. Motivation
	1.1 Sequence Structure Reminder
	1.2 Queues
	1.3 Priority Queues
	1.4 For later…

	2. Interface
	2.1 Operations
	2.2 Implementations

	3. PQ Elements
	4. Array Implementation
	4.1 Very similar to SortedArray for searching
	4.2 Get
	4.3 Put

	5. List Implementation
	5.1 Operations
	5.2 Implementations
	5.3 Example from PQAsList

	6. Tree Implementation
	6.1 Any other way to do this?
	6.2 Search Trees

	7. Binary Trees Revisited
	7.1 Special types of binary tree to define heap

	8. Heap Types
	8.1 heap: complete binary tree with ordering
	8.2 Specific heap types
	8.3 Real Life Examples
	8.4 Min or Max for PQ?
	8.5 Methods to implement
	8.6 Heapsort

	9. Heap Operations
	9.1 put
	9.2 get
	9.3 create heap

	10. Heaps and Arrays!
	10.1 Number Nodes in Heap
	10.2 Now, put items in array with indicies
	10.3 Now, think BINARY TREE
	10.4 Older files to check out:
	10.5 Interesting Features
	10.6 Binary Path
	10.7 Example (put)

	11. Maxheap Code
	11.1 Fields, Constructors
	11.2 Put
	11.3 Get
	11.4 PQ AS Maxheap (AsArray)

	12. Time analysis
	12.1 Nodes and height
	12.2 put
	12.3 get

	13. Exercises


