CS211, LECTURE 22
HIERARCHICAL SEQUENCE
STRUCTURE

ANNOUNCEMENTS:

OVERVIEW:

* Motivation

« PQ

* Linear PQ

* Heaps

 PQ as Heap

» Array representation

CS211, Lecture 22

1. Motivation

1.1 Sequence Structure Reminder

« want ADT to store and retrieve items
 use put and get to create and manipulate a pile of things

* not interested 1n search
1.2 Queues

* line things up, take them out in FIFO order

« weakness: what if some things are more important than
others?

» Analogies: patients needing emergency care, small and
large print jobs, office hours...

1.3 Priority Queues

* insert items in any order:
include a priority (numerical rating of importance)

 extract items according to priority
1.4 For later...

« some algorithms need to be broken into smaller tasks
 use PQs to prioritize which tasks occur early/later

Hierarchical Sequence Structure Motivation 2

2. Interface

I nterface SeqStructure {
voi d put (Obj ect 0);
(bj ect get();
bool ean i sEmpty();
I nt size();

}
2.1 Operations

e put: insert items in any order...
e get: remove item with highest priority
- might see altenate ops: f i ndM n or f i ndMax

- return smallest/largest item means return highest/
lowest priority (“small” things usually go first)

2.2 Implementations

* linear: as array, as list

 hierarchical: as BST (better, splay tree), heap (special
kind of tree)

Hierarchical Sequence Structure Interface

3. PQ Elements

PQ Element has data (Qbj ect) and priority (i nt)
kind of like a key-value pair

design elements to be compared for priorities

e code:

public class PQEl enent inplenments Conparable {

private Cbject item
private int priority;
public PCEl enent (Cbject o, int p) {

Item = o;

priority = p;
}
public int getPriority() { return priority; }
public void setPriority(int p) { priority = p; }
public Object getltenm() { return item }
public String toString() {

return "("+itemt","+priority+")"; }

/1l return pos neans this.p >
/1l return nil neans this.p =
/1l return neg neans this.p <
public int conpareTo(Cbject o)
I f (o instanceof PQElI enent)
return (priority - ((PQElenment)o).priority);
el se {
Systemout.println("Crap!");
return 0; // should really throw an Exception

© OO

- P
- P
- P

{

}
}
} /] dass PQEl enent

Hierarchical Sequence Structure PQ Elements

4. Array Implementation

4.1 Very similar to Sort edAr r ay for searching

* but, must allow for duplicates
 sort in ascending order
 item with highest priority from end of array
* S0,
- get: O(1)
- put: O(n)
» see PQAsSort edArray. j ava

4.2 Get

/'l get the rightnost item
/'l because sorted in ascendi ng order
/'l (want highest priority item:
public Object get() {
/'l check for enpty PQ
I f (size == 0) {
Systemout.println("Enpty array error!");
return null;

}

return af--size];

Hierarchical Sequence Structure Array Implementation

4.3 Put

* need to set cursor (current item) with binary search

« allow for repeats

/1l insert into right place in sorted array
/'l (ascendi ng order):
public void put(Cbject o) {

I f (size == MAXSI ZE) {
Systemout.println("Overflow error!");
return;

}

/] set the cursor to point to insertion point:

bool ean found = search(o);

/1l find | eftnost object equal to o

/'l (could have repeats):

while (cursor > 0 &&
((PQEl enent) (a[cursor - 1])).conpareTo(o) == 0)
cursor--;

/1 make room for new el enent by shifting

/] elenents to |left of cursor

for (int i =size -1; I >= cursor;i--)
a[i+1] = a[i];

/] insert new el enent:
a[cursor] = (PCQEl enent) o;
S| ze++;

Hierarchical Sequence Structure Array Implementation

5. List Implementation

5.1 Operations

 put: either store “randomly” (FIFO) or sort list:
- FIFO makes put easy, but get hard

- sorted list makes put work a lot to insert and set
cursors (same kind of cursors as array PQ) but get is
very easy

« get : see above
5.2 Implementations

 PQAsLI st : easy put, hard get
 PQAsLi st Al t: hard put, easy get
« cither way, at least one operation is O(n)

Hierarchical Sequence Structure List Implementation 7

5.3 Example from PQAsList

public class PQAsList inplenents SeqStructure{
Il fields

public void put(CObject 0) {

| ist.add(o0); size++; }

public Object get() {

|f (i sEmpty()) {
Systemout. print("Enmpty!");
return null;

}

/'l search list, starting from head:
Li st Node n = |ist.getHead();

(bj ect max = n.getltem);

Li st Node next = n.getNext();

/1 find and update nax:
while (next !'= null) {

}

bj ect current = next.getltem();

int conp = ((Conparabl e)current). conpareTo(max);
if (conp > 0) max = current;

next = next.getNext();

l'ist.renove(max);
sl ze--;
return nmax,

/] nmet hods

Hierarchical Sequence Structure List Implementation

6. Tree Implementation

6.1 Any other way to do this?

 array & list have O(n) at some point
* so maybe a search tree could help us?

6.2 Search Trees

 designed for searching (BST gives O(log n) on avg

- search 1s proportional to height (search path from root
to leaf)

- nodes = 2”height-1, so height = log[2](nodes+1)
- if BST is “bushy”, gives O(log »n) time
- 1f BST is “skinny”, resembles list: O(n) time

actually, there’s a lot more math involved here...
e problems:
- input not randomized (queues used for simulation)
- support more operations than really needed
- need to have “bushiness” of tree to get O(log n)
» something called a splay tree helps sometimes
 heap to the rescue!

Hierarchical Sequence Structure Tree Implementation 9

7.

7.1

Binary Trees Revisited

Special types of binary tree to define heap

* we need some tree definitions
 full binary tree: every node has two children

» complete binary tree: full binary tree, except...

- next-to-last level may be partially filled
- must fill last level from left to right

 full, complete help give “bushiness” to trees

25 A

full complete

Hierarchical Sequence Structure Binary Trees Revisited

10

8. Heap Types

8.1 heap: complete binary tree with ordering

* different kinds of ordering (min, max, min-max, ...)
 not related to “the heap”
» use Conpar abl e to achieve ordering

8.2 Specific heap types

* maxheap: object in a node = all children
* minheap: object in a node < all children

» min-max heap (and more): http://www.diku.dk/
forskning/performance-engineering/Jesper/heaplab/
heapsurvey_html/nodel.html

o

maxheap minheap

Hierarchical Sequence Structure Heap Types 11

8.3

8.4

8.5

8.6

Real Life Examples

 ages of people in family tree: parent is always older than
children (max heap), but you may have an uncle/aunt
younger than you

» people’s salaries: bosses make more than subordinates
(“pions”), but a 2nd-level manager may make more
money than a 1st-level manager in a different sub-
division

Min or Max for PQ?
» we’ll pick maxheap (DS&SD 18.6)

* why? want to find max priority item

» minheap has analogous operations (see DS&A, Chap
11)

Methods to implement

* put : add something to the heap, but must preserve the
heap property (min, max, min-max, ...)

« get : remove largest item from the heap
Heapsort

» Ifwe’re always pulling out the largest (or smallest) item,
then technically, we could use a heap for sorting!

* DS&SD go into heapsort (section 18.6)

Hierarchical Sequence Structure Heap Types 12

9. Heap Operations

9.1 put

» method will insert item at first free node (left-bottom)

* must maintain heapness, so will have to reheapify

W) (@) (8

Get heap

Does it have enough space?
Find/create 1st empty location
See if item (8) goes there

Parent (4) is < item (8)
so, move parent to that empty
Now, compare item with parent

Parent (7) is < item (8)

so, move parent to that empty
Now, compare item with root
Nothing left to compare
Done.

Hierarchical Sequence Structure

Heap Operations

13

9.2 get

« want to remove max, which means root (uh oh!)
 tree could becomes forest! crap!
* but, we could “fix” (reheap) the heap

a Get max (root, which was 8)
Replace with 1st leaf (4)

G 0 Delete (or nullify) that leaf

Want happy heap? Reheap!
3 @

0 Item (4) is > children
Put item in current parent

0 Done!

Our heap is ready for more action.

Hierarchical Sequence Structure Heap Operations 14

9.3 create heap

« could use put , which gives O(n log n)

* better: reheap each internal node until reaching root:

59

start with not-heap reheap child
o
s) (e - (5) (8
@ (2 3 @ (2 3
reheap other child reheap next level...whoops!
0
) (0 - (5) (3
@ (2 3 @ (2
almost done! done!

Hierarchical Sequence Structure Heap Operations

15

10.

10.1

10.2

10.3

Heaps and Arrays!

Number Nodes in Heap

Now, put items in array with indicies

alblc|d|e|f

Now, think BINARY TREE

 binary tree should somehow use powers of 2
o ex) size =2"Nh+1)-1 =272+1)-1 =8-1=7

Hierarchical Sequence Structure Heaps and Arrays! 16

10.4 Older files to check out:

« MaxHeap. | ava
« HeapDecoder.java
« Test MaxHeap. j ava

10.5 Interesting Features

e children of node i: 27 and 2i+1

» parent of node i (not root): i/2

* root: i/2=0,s01=1

Hierarchical Sequence Structure

Heaps and Arrays!

17

10.6 Binary Path

 find binary representation of a node number:

formula:

1

d=bx2"+b _ x2" '+ +b x2'+p,x2"

take number d, divide by 2

remainders are by, by, ...,b, |,b,
ex) b0=6%2=0; b1=3%2=1; b2=1%2=0; so, 6 - 110
* drop leading 1 (if exists):

- pattern: 1 =R, 0=L

- ex) 6 - 110, so to find node 6, go RK (10):

Hierarchical Sequence Structure Heaps and Arrays! 18

10.7 Example (put)

Want to put 80 into heap

80 > 407?
70(60[/40/10(30/(20 Want to insert item (80)
Locate free space (index 7)
01 2 3 45 6 7 Find parent 7/2=3 40
80 > 707
70/60/80/10(30(20/40 80>40, so move 40 to index 7

Find parent: 3/2=1-70
0 1 2 3 4 5 6 7

80/60/70/10/30/20/40 80>70, so move 80 to index 1
Find parent: 1/2=0
0 1 2 3 4 5 6 7 So, we reached root...done!

Hierarchical Sequence Structure Heaps and Arrays! 19

11. Maxheap Code

From MaxheapAsArray. j ava
See also PQAsMaxheapAsArray. | ava

11.1 Fields, Constructors

private Qbject[] heap;
private int MAXSI ZE;
private int size; // gives pointer to |ast index in heap

publ i ¢ MaxheapAsArray(int size) {
MAXSI ZE = si ze;
heap = new bj ect [MAXSI ZE] ;

}

publ i c MaxheapAsArray(Qbject[] stuff) {
/'l set # of elens and allotted space:
MAXSI ZE = size = stuff.|ength+l;

/'l need to have enpty Oth pos:
heap = new bj ect [MAXSI ZE] ;

/'l copy stuff into unheaped heap:
System arraycopy(stuff, 0, heap, 1, MAXSI ZE) ;

// start at root and work "down"
for (int i = heap.length/2; i > 0; i--) reheap(i);

Hierarchical Sequence Structure Maxheap Code 20

11.2 Put
public void put(Object o) {
size++; // increnent size nore this newitem

/'l increase array if out of space
i f (size > MAXSI ZE) increaseHeapSi ze();

int index = size; // index of current free |ocation
int parent = index/2; // parent of free |ocation

/1 Until reaching root, nove the parents down
/Il while itemo > parents:
while (index > 1 &&
((Conpar abl e) 0).conpareTo(heap[parent]) > 0) {

heap[i ndex] =heap[parent]; // parent ->child
| ndex = parent,; /'l update index
parent = index/2; /| updat e parent

}

/'l done finding appropriate |ocation
/1l to maintain heapness:
heap[i ndex] = o;

Hierarchical Sequence Structure Maxheap Code

11.3 Get

public Object get() {
Obj ect root = null;

it (tisEmpty()) {

root = heap[1]; /[l max itemto return
heap[1] =heap[si ze]; // root<-recent item added
si ze--; /'l reduce size

reheap(l); /'l reheap entire tree

}

return root;

}
r eheap? See MaxheapAsArray.j ava
11.4 PQ AS Maxheap (AsArray)

public class PQAsMaxheapAsArray {
public static void main(String[] args) {

SeqStructure pg = new MaxheapAsArray(10);
pqg. put (new PQEl enent ("Bill", 3));
pqg. put (new PQElI enent (" Monica", 1));
pg. put (new PQEl enent ("Hi |l ary", 4));
Pg. get());
pqg. put (new PQElI enent (" Gennifer", 3));

Hierarchical Sequence Structure Maxheap Code

22

12. Time analysis

12.1 Nodes and height

. n=2h—1

c 2" =t

* 50, h = log(n+1)
12.2 put

* heightis log(n+ 1)

» adding does 1 level at a time, so O(log n)

12.3 get

 similar analysis as height
* O(log n)

Hierarchical Sequence Structure Time analysis

23

13. Exercises

e Implement a PQ with a circular array.

* Implement a PQ with a sorted list. Allow for duplicate
items.

 Writet oTr ee for HeapAsAr r ay that produces a
text-based tree, as we did for you binary trees.

* Rewrite HeapAsArray’s put such that the unused
array position (index 0) stores the item. Doing so helps
to move the i ndex > 1 testin the whi | e loop.

* Write a heapsort method inside HeapAsAr r ay.

Hierarchical Sequence Structure Exercises 24

	CS211, Lecture 22
	Hierarchical Sequence Structure
	Announcements:
	Overview:
	. Motivation
	. PQ
	. Linear PQ
	. Heaps
	. PQ as Heap
	. Array representation

	1. Motivation
	1.1 Sequence Structure Reminder
	. want ADT to store and retrieve items
	. use put and get to create and manipulate a pile of things
	. not interested in search

	1.2 Queues
	. line things up, take them out in FIFO order
	. weakness: what if some things are more important than others?
	. Analogies: patients needing emergency care, small and large print jobs, office hours…

	1.3 Priority Queues
	. insert items in any order: include a priority (numerical rating of importance)
	. extract items according to priority

	1.4 For later…
	. some algorithms need to be broken into smaller tasks
	. use PQs to prioritize which tasks occur early/later

	2. Interface
	interface SeqStructure {
	void put(Object o);
	Object get();
	boolean isEmpty();
	int size();
	}
	2.1 Operations
	. put: insert items in any order…
	. get: remove item with highest priority
	- might see altenate ops: findMin or findMax
	- return smallest/largest item means return highest/ lowest priority (“small” things usually go first)

	2.2 Implementations
	. linear: as array, as list
	. hierarchical: as BST (better, splay tree), heap (special kind of tree)

	3. PQ Elements
	. PQ Element has data (Object) and priority (int)
	. kind of like a key-value pair
	. design elements to be compared for priorities
	. code:
	public class PQElement implements Comparable {
	private Object item;
	private int priority;
	public PQElement(Object o, int p) {
	item = o;
	priority = p;
	}
	public int getPriority() { return priority; }
	public void setPriority(int p) { priority = p; }
	public Object getItem() { return item; }
	public String toString() {
	return "("+item+","+priority+")"; }
	// return pos means this.p > o.p
	// return nil means this.p = o.p
	// return neg means this.p < o.p
	public int compareTo(Object o) {
	if (o instanceof PQElement)
	return (priority - ((PQElement)o).priority);
	else {
	System.out.println("Crap!");
	return 0; // should really throw an Exception
	}
	}
	} // Class PQElement

	4. Array Implementation
	4.1 Very similar to SortedArray for searching
	. but, must allow for duplicates
	. sort in ascending order
	. item with highest priority from end of array
	. so,
	- get: O(1)
	- put: O(n)

	. see PQAsSortedArray.java

	4.2 Get
	// get the rightmost item,
	// because sorted in ascending order
	// (want highest priority item):
	public Object get() {
	// check for empty PQ:
	if (size == 0) {
	System.out.println("Empty array error!");
	return null;
	}
	return a[--size];
	}

	4.3 Put
	. need to set cursor (current item) with binary search
	. allow for repeats
	// insert into right place in sorted array
	// (ascending order):
	public void put(Object o) {
	if (size == MAXSIZE) {
	System.out.println("Overflow error!");
	return;
	}
	// set the cursor to point to insertion point:
	boolean found = search(o);
	// find leftmost object equal to o
	// (could have repeats):
	while (cursor > 0 &&
	((PQElement)(a[cursor - 1])).compareTo(o) == 0)
	cursor--;
	// make room for new element by shifting
	// elements to left of cursor
	for (int i = size -1; i >= cursor;i--)
	a[i+1] = a[i];
	// insert new element:
	a[cursor] = (PQElement) o;
	size++;
	}

	5. List Implementation
	5.1 Operations
	. put: either store “randomly” (FIFO) or sort list:
	- FIFO makes put easy, but get hard
	- sorted list makes put work a lot to insert and set cursors (same kind of cursors as array PQ) but get is very easy

	. get: see above

	5.2 Implementations
	. PQAsList: easy put, hard get
	. PQAsListAlt: hard put, easy get
	. either way, at least one operation is O(n)

	5.3 Example from PQAsList
	public class PQAsList implements SeqStructure{
	// fields
	public void put(Object o) {
	list.add(o); size++; }
	public Object get() {
	if (isEmpty()) {
	System.out.print("Empty!");
	return null;
	}
	// search list, starting from head:
	ListNode n = list.getHead();
	Object max = n.getItem();
	ListNode next = n.getNext();
	// find and update max:
	while (next != null) {
	Object current = next.getItem();
	int comp = ((Comparable)current).compareTo(max);
	if (comp > 0) max = current;
	next = next.getNext();
	}
	list.remove(max);
	size--;
	return max;
	// methods
	}

	6. Tree Implementation
	6.1 Any other way to do this?
	. array & list have O(n) at some point
	. so maybe a search tree could help us?

	6.2 Search Trees
	. designed for searching (BST gives O(log n) on avg
	- search is proportional to height (search path from root to leaf)
	- nodes = 2^height-1, so height = log[2](nodes+1)
	- if BST is “bushy”, gives O(log n) time
	- if BST is “skinny”, resembles list: O(n) time
	- actually, there’s a lot more math involved here…

	. problems:
	- input not randomized (queues used for simulation)
	- support more operations than really needed
	- need to have “bushiness” of tree to get O(log n)

	. something called a splay tree helps sometimes
	. heap to the rescue!

	7. Binary Trees Revisited
	7.1 Special types of binary tree to define heap
	. we need some tree definitions
	. full binary tree: every node has two children
	. complete binary tree: full binary tree, except…
	- next-to-last level may be partially filled
	- must fill last level from left to right

	. full, complete help give “bushiness” to trees

	8. Heap Types
	8.1 heap: complete binary tree with ordering
	. different kinds of ordering (min, max, min-max, …)
	. not related to “the heap”
	. use Comparable to achieve ordering

	8.2 Specific heap types
	. maxheap: object in a node ³ all children
	. minheap: object in a node £ all children
	. min-max heap (and more): http://www.diku.dk/ forskning/performance-engineering/Jesper/heaplab/ heapsurvey_html/node1.html

	8.3 Real Life Examples
	. ages of people in family tree: parent is always older than children (max heap), but you may have an uncle/aunt younger than you
	. people’s salaries: bosses make more than subordinates (“pions”), but a 2nd-level manager may make more money than a 1st-level manager in a different sub- division
	8.4 Min or Max for PQ?
	. we’ll pick maxheap (DS&SD 18.6)
	. why? want to find max priority item
	. minheap has analogous operations (see DS&A, Chap 11)

	8.5 Methods to implement
	. put: add something to the heap, but must preserve the heap property (min, max, min-max, …)
	. get: remove largest item from the heap

	8.6 Heapsort
	. If we’re always pulling out the largest (or smallest) item, then technically, we could use a heap for sorting!
	. DS&SD go into heapsort (section 18.6)

	9. Heap Operations
	9.1 put
	. method will insert item at first free node (left-bottom)
	. must maintain heapness, so will have to reheapify

	9.2 get
	. want to remove max, which means root (uh oh!)
	. tree could becomes forest! crap!
	. but, we could “fix” (reheap) the heap

	9.3 create heap
	. could use put, which gives O(n log n)
	. better: reheap each internal node until reaching root:

	10. Heaps and Arrays!
	10.1 Number Nodes in Heap
	10.2 Now, put items in array with indicies
	10.3 Now, think BINARY TREE
	. binary tree should somehow use powers of 2
	. ex) size = 2^(h+1)-1 = 2^(2+1)-1 = 8-1 =7

	10.4 Older files to check out:
	. MaxHeap.java
	. HeapDecoder.java
	. TestMaxHeap.java
	10.5 Interesting Features
	. children of node i: 2i and 2i+1
	. parent of node i (not root): i/2
	. root: i/2=0, so i = 1

	10.6 Binary Path
	. find binary representation of a node number:
	- formula:
	- take number d, divide by 2
	- remainders are
	- ex) b0=6%2=0; b1=3%2=1; b2=1%2=0; so, 6Æ110

	. drop leading 1 (if exists):
	- pattern: 1 = R, 0 = L
	- ex) 6 Æ 110, so to find node 6, go RK (10):

	10.7 Example (put)

	11. Maxheap Code
	From MaxheapAsArray.java
	See also PQAsMaxheapAsArray.java
	11.1 Fields, Constructors
	private Object[] heap;
	private int MAXSIZE;
	private int size; // gives pointer to last index in heap
	public MaxheapAsArray(int size) {
	MAXSIZE = size;
	heap = new Object[MAXSIZE];
	}
	public MaxheapAsArray(Object[] stuff) {
	// set # of elems and allotted space:
	MAXSIZE = size = stuff.length+1;
	// need to have empty 0th pos:
	heap = new Object[MAXSIZE];
	// copy stuff into unheaped heap:
	System.arraycopy(stuff,0,heap,1,MAXSIZE);
	// start at root and work "down"
	for (int i = heap.length/2; i > 0; i--) reheap(i);
	}

	11.2 Put
	public void put(Object o) {
	size++; // increment size more this new item
	// increase array if out of space
	if (size > MAXSIZE) increaseHeapSize();
	int index = size; // index of current free location
	int parent = index/2; // parent of free location
	// Until reaching root, move the parents down
	// while item o > parents:
	while (index > 1 &&
	((Comparable) o).compareTo(heap[parent]) > 0) {
	heap[index]=heap[parent]; // parent ->child
	index = parent; // update index
	parent = index/2; // update parent
	}
	// done finding appropriate location
	// to maintain heapness:
	heap[index] = o;
	}

	11.3 Get
	public Object get() {
	Object root = null;
	if (!isEmpty()) {
	root = heap[1]; // max item to return
	heap[1]=heap[size]; // root<-recent item added
	size--; // reduce size
	reheap(1); // reheap entire tree
	}
	return root;
	}
	reheap? See MaxheapAsArray.java
	11.4 PQ AS Maxheap (AsArray)
	public class PQAsMaxheapAsArray {
	public static void main(String[] args) {
	SeqStructure pq = new MaxheapAsArray(10);
	pq.put(new PQElement("Bill",3));
	pq.put(new PQElement("Monica",1));
	pq.put(new PQElement("Hillary",4));
	pq.get());
	pq.put(new PQElement("Gennifer",3));
	}
	}

	12. Time analysis
	12.1 Nodes and height
	.
	.
	. so,

	12.2 put
	. height is
	. adding does 1 level at a time, so O(log n)

	12.3 get
	. similar analysis as height
	. O(log n)

	13. Exercises
	. Implement a PQ with a circular array.
	. Implement a PQ with a sorted list. Allow for duplicate items.
	. Write toTree for HeapAsArray that produces a text-based tree, as we did for you binary trees.
	. Rewrite HeapAsArray’s put such that the unused array position (index 0) stores the item. Doing so helps to move the index > 1 test in the while loop.
	. Write a heapsort method inside HeapAsArray.

