
�
�

�
�

Data Structures

�

�
�

�
�

Goal� Understand data structures by solving the puzzle problem

� Elementary Structures

�� Arrays

�� Lists

�� Trees

� Search Structures

�� Binary search trees

�� Hash tables

� Sequence Structures

�� Stacks

�� Queues

�� Priority queues

� Graphs

�

�
�

�
�

A Motivating Application

�

�
�

�
�

3 4 2
1
6 7 8

5
3 4 2
1
6 8

5
3 4 2
1
6 7 8

7

5

5
3 4 2

7 8
1

5
3 4 2

6 7 8
1

5
4 2

6 7 8
1

6

3

N S

W

E W

E

N S

NSS N

5
2

1
6 7 8

4

5
3 2
1
6 7 8

4

5
3
1
6 7 8

4

E

W
W E

3

2

State Transition Graph of 8-Puzzle

�

�
�

�
�

3 4 2
1
6 7 8

5
3 4 2
1
6 8

5
3 4 2
1
6 7 8

7

5

5
3 4 2

7 8
1

5
3 4 2

6 7 8
1

5
4 2

6 7 8
1

6

3

N S

W

E W

E

N S

NSS N

5
2

1
6 7 8

4

5
3 2
1
6 7 8

4

5
3
1
6 7 8

4

E

W
W E

3

2

nodes

edges: connection between
two nodes

Graph: set of Nodes and Edges between nodes

�

�
�

�
�

Graph: a very general data structure

E = {(A,B), (B,C),(C,B),.....}

V = {A,B,C,D,E,F,G,H,I,J}

Edge (A,B):
A is source of edge
B is destination of edge

Graphs can represent state transitions, road maps, mazes

In some graphs, edges may have additional information.

- puzzle graph: edges annotated with N/S/E/W

A

B
C

D
E

F
G

H

I J

V: set of nodes E: set of edges (pairs of nodes)

In some graphs, certain nodes may be special

- puzzle graph: initial and final (sorted) nodes are special

Graph in example is a DIRECTED graph

 analogy: 1-way street vs 2-way street
Undirected graph: no arrows on edges

�

�
�

�
�

Some terminology

A

B
C

D
E

F
G

H

I J

E = {(A,B), (B,C),(C,B),.....}

V = {A,B,C,D,E,F,G,H,I,J}

� Out�edges of a node n� set of edges whose source is node n �eg�

out�edges of C are f�C�B���C�D�g�

� Out�degree of a node n� number of out�edges of node n

� In�edges of a node n� set of edges whose destination is node n �eg�

in�edges of C are f�B�C���F�C�g�

� In�degree of a node n� number of in�edges of node n

� Degree of a node n in an undirected graph� number of edges

attached to n in that graph

� Adjancency� node n is said to be adjacent to node m if �m�n� is an

edge in the graph

Intuitively� we can get from m to n by traversing one edge�

�

�
�

�
�

� Path� a sequence of edges in which destination node of an edge in

sequence is source node of next edge in sequence

Examples��i� �A�B���B�C���C�D� �ii� �H�I���I�J�

� Source of a path� source of �rst edge on path

Destination of path� destination of last edge on path

� Reachability� node n is said to be reachable from node m if there is

a path from m to n�

� There may be many paths from one node to another�

Example� �E�F� and �E�B���B�C���C�D���D�G���G�F�

� Simple path� a path in which every node is the source and

destination of at most two edges on the path

Example� �not a simple path� �C�B���B�C���C�D�

� Cycle� a simple path whose source and destination nodes are the

same� Example� �i� �C�B���B�C� �ii� �D�G���G�J���J�D�

�

�
�

�
�

Path problems

A

B
C

D
E

F
G

H

I J

X

Y

Z

For puzzle problem, answer is no for some nodes!

Many interesting problems can be phrased as path problems in graphs.

1 2 3
4 5 6
8 7 0

Sam Loyd: cannot reach sorted state from

(1) Is there a way to reach the sorted state, starting from any scrambled
 position of tiles? GRAPH SEARCH (similar to search in array)

Reachability problem:
Is there a path from a given node to the node representing sorted position?

	

�
�

�
�

Path problems

A

B
C

D
E

F
G

H

I J

X

Y

Z

Minimal path problems:
Find the shortest path from node A to node F.
Find the shortest path from every node to F.

Length of a path: number of edges in path

For puzzle problem, this corresponds to path with fewest moves.

This is more appropriate for path problems in graphs representing maps.
Length of path = sum of lengths of distances on path.
Sometimes, edges have distances.

�

�
�

�
�

Path problems

A

B
C

D
E

F
G

H

I J

X

Y

Z

Cycle: Path that starts and ends at same node.

Travelling salesman’s problem:
Find the smallest length cycle that passes through all nodes.

No one knows if there is an efficient algorithm for this problem.

 (NP/NP-complete problems)

Easy to come up with slow algorithms for this problem.

��

�
�

�
�

These kinds of problems are studied in graph theory�

If you get turned on by this stu�� become a CS major and take CS

��	� �
���
� etc�

We will have time only to study some simple problems like

reachability� with the goal of understanding modern data

structures�

��

�
�

�
�

Goal� write a program to determine if sorted state is reachable

from scrambled state for puzzle problem

Idea�
� Start in the scrambled state�

� Generate states adjacent to scrambled state�

� Generate states adjacent to those states�

����

� Stop if you either generate sorted state or you have generated

all states reachable from scrambled state�

Think� Graph search is similar to linear search except that we are

searching for something in a graph rather than in an array�

��

�
�

�
�

Requirements�

�� should not get stuck in cycles �correctness

�� should be exhaustive� if we terminate without reaching sorted

state� sorted state must be unreachable from scrambled state

�correctness

�� should not repeatedly examine states adjacent to a

state�e�ciency

��

�
�

�
�

Key Idea� Keep two sets of nodes

�� toDo � set of nodes whose adjancies might need to be examined

�� done � set of nodes whose adjacencies have been examined

Pseudocode for Graph Search algorithm�

initialize toDo set with scrambled configuration�

while �toDo set is not empty�

�Remove a node v from toDo set�

if �v is in done set� continue�

��we reach here if we have never explored v before

for each node w adjacent to v do ��there is edge �v �� w�

�If w is the goal node� declare victory�

Otherwise� add w to toDo set�

	

add v to done set�

	

��

�
�

�
�

Modi�cation� before adding w to toDo set� check if it is already

there in the done set�

� Advantage� we do not put it into toDo set and get it out again

if it has already been explored�

� Disadvantage� if node has not been explored� we will look it up

in done set twice�

Code� see next slide�

��

�
�

�
�

initialize toDo set with scrambled configuration�

while �toDo set is not empty�

�Remove a node v from toDo set�

if �v is in done set� continue�

��we reach here if we have never explored v before

for each node w adjacent to v do ��there is edge �v �� w�

If �w is not in done set� �

If �w is the goal node� declare victory�

add w to toDo set�

	

add v to done set�

	

��

�
�

�
�

Modi�cation� handling self�loops more e�ciently

If �v � � v is an edge� we would add v to toDO set when

exploring v�

This is not necessary� so let us �x code�

initialize toDo set with scrambled configuration�

while �toDo set is not empty�

�Remove a node v from toDo set�

if �v is in done set� continue�

��we reach here if we have never explored v before

add v to done set���this optimizes self�loops

for each node w adjacent to v do ��there is edge �v �� w�

If �w is not in done set� �

If �w is the goal node� declare victory�

add w to toDo set�

	

	

��

�
�

�
�

21
3

2
1
3

1
23

3
2
1

2
3 1

12
3 3

12

2 3
1

1
2 3

3
2
1

2
31

1 2
3

S N

S

S

N

N

E W

E

E

W

W

N S

NS

EW WE

W

E

NS

Sorted
State 3

3

3

3

3

3 3

3

3

3

3

3

S N

S

S

N

N

E W

E

E

W

W

N S

NS

EW WE

W

E

NS

12

2
1

1
2

1
2

1
2

1 2 1 2

2
1

1
2

1
2

2
1

2 1

Let us try to execute a few steps of the algorithm for this problem.

Scrambled
State

�	

�
�

�
�

3 1
2

2
3 1

3
2
1

1
23

1
23

12
3

2
1
3

12
3

3 1

3 1
2

2

3 2
1

3 1
2

3
2

1

: configuration in toDo set : configuration in Done set

Algorithm for Solving Puzzle

Note: we are not keeping track of moves that brought us to a given configuration

: some possible initial steps

�

�
�

�
�

To make this a program� we need to answer the following questions�

�� SEQUENCE STRUCTURE� In what order should we get nodes

from the toDo set� What data structure can we design to give us

the nodes in that order� How can we accommodate the fact that

the toDo set grows and shrinks�

Answer� stacks� queues� priority queues

�� SEARCH STRUCTURE� How do we organize the Done set so

that we can search it e�ciently�

Answer� binary search trees� hash tables

��

�
�

�
�

Writing generic code�

� Order in which we explore nodes �order in which they are

removed from toDo set is very important� and can make a big

di�erence in how quickly we �nd solution�

How can we write code so that it works for any sequence

structure� Answer� use subtyping

� Most time�consuming part� searching if node is in Done set�

How do we write code so that it works for any search

structure� Answer� use subtyping

� Graph search algorithm works for any graph� not just puzzle

state transition graph �all we need to some way to determine

what nodes are adjacent to a given node�

How can we write code so that it works for any graph� Use

Iterators to return all adjacent vertices of a node�

��

�
�

�
�

Two key interfaces�

SeqStructure� all sequence structures implement this interface

SearchStructure� all search structures implement this interface

For search structure� fast search is important�

For sequence structure� fast lookup is not important�

��

�
�

�
�

Code for Simulating Puzzle

class searcher�

public static void main�String
� args� �

IPuzzle p� new ArrayPuzzle���

p��move��S���

p��move��E���

SearchStructure s new BST���

SeqStructure q new QAsList���

graphSearch�p��q�s��

	

��

�
�

�
�

��specialized to puzzle problem

��will work for any search structure and sequence structure

public static void graphSearch�IPuzzle p��

SeqStructure toDo�

SearchStructure done��

if �p��isSorted��� �

System�out�println��Already sorted���

return�

	
��initialize work�list

toDo�put�p���

��while there are toDo nodes

while �� toDo�isEmpty��� �

��get a toDo node

IPuzzle p �IPuzzle�toDo�get���

��have we explored this node already�

��

�
�

�
�

if �done�search�p�� continue�

��if not� let�s explore this node

done�insert�p��

��determine adjacent nodes and process them

String Moves �NSEW��

for �int i �� i � Moves�length��� i��� �

IPuzzle nP p�duplicate���

char dir Moves�charAt�i��

��try to make the move

boolean OK nP�move�dir��

if �OK� �

��move succeeded� so we have a legitimate node

if �� done�search�nP�� �

if �nP�isSorted��� �

System�out�println��Hurrah���

return�

	

toDo�put�nP��

��

�
�

�
�

	
	

	

	
��no more toDo nodes

System�out�println��Could not reach sorted state���

	
	

��

�
�

�
�

The code we have written will work for any search structure and

sequence structure that implement the interfaces de�ned before�

Subtyping is wonderful�

The puzzle state transition graph is hardwired into the code� We

cannot use it to perform a graph search in a general graph� We will

�x this later�

toDo data structure grows and shrinks� How do we implement a

good sequence structure�

How do we implement a good search structure�

��

