/Goal: Understand data structures by solving the puzzle problem \

e Elementary Structures

1. Arrays
2. Lists
3. Trees

e Search Structures

1. Binary search trees
2. Hash tables

e Sequence Structures

1. Stacks
2. Queues
3. Priority queues

e Graphs
_ %

Data Structures

State Transition Graph of 8-Puzzle

oo 1 [N
A

Bl

4 W 42
5 1 |5 15
718/ E 678/W \l6]7]8
N ~—_
S/IN SiN
N
3] [2)
E 145> <315/%
>/678 w

~

A Motivating Application

/ Graph: avery genera data structure

[V: set of nodes E: set of edges (pairs of nodes) J

V ={A,B,CD,EFGH,IJ]}
E={(A,B), (B,C),(CB),....}
Edge (A,B):

A is source of edge
B is destination of edge

Graphs can represent state transitions, road maps, mazes.........
In some graphs, edges may have additional information.

- puzzle graph: edges annotated with N/S/TE/W
In some graphs, certain nodes may be special

- puzzle graph: initial and final (sorted) nodes are special

Graph in exampleisa DIRECTED graph

Undirected graph: no arrows on edges

~

K analogy: 1-way street vs 2-way street
6
/ Graph: set of Nodes and Edges between nodes

oo 1 [N
~__

~N S
oo 1 [
<
N

o w

> édges: connection between
two nodes

Nlo s
o
rﬂv—
o [w
~
oo
N—
(2]
—NES

2]\’
32\ ="~ \/8
1415) | W
67]’8 WfE
! N

~

Path: a sequence of edges in which destination node of an edge in
sequence is source node of next edge in sequence

Examples:(i) (A,B),(B,C),(C,D) (ii) (H,I),(I,J)

Source of a path: source of first edge on path

Destination of path: destination of last edge on path
Reachability: node n is said to be reachable from node m if there is
a path from m to n.

There may be many paths from one node to another.

Example: (E,F) and (E,B),(B,C),(C,D),(D,G),(G,F)

Simple path: a path in which every node is the source and
destination of at most two edges on the path

Example: (not a simple path) (C,B),(B,C),(C,D)

Cycle: a simple path whose source and destination nodes are the
same. Example: (i) (C,B),(B,C) (ii) (D,G),(G,J),(J,D)

/

~

Some terminology

V={ABCDEFGHI}
E={(AB), (B.C)(CB),...}

Out-edges of a node n: set of edges whose source is node n (eg.
out-edges of C are {(C,B),(C,D)})

Out-degree of a node n: number of out-edges of node n

In-edges of a node n: set of edges whose destination is node n (eg.
in-edges of C are {(B,C),(F,C)})

In-degree of a node n: number of in-edges of node n

Degree of a node n in an undirected graph: number of edges
attached to n in that graph

Adjancency: node n is said to be adjacent to node m if (m,n) is an
edge in the graph

Intuitively, we can get from m to n by traversing one edge.

/

Path problems

Length of a path: number of edgesin path

Find the shortest path from node A to node F.
Find the shortest path from every nodeto F.

For puzzle problem, this corresponds to path with fewest moves.

Minimal path problems:

Sometimes, edges have distances.
Length of path = sum of lengths of distances on path.
Thisis more appropriate for path problems in graphs representing maps.

4 N

These kinds of problems are studied in graph theory.

If you get turned on by this stuff, become a CS major and take CS
410, 381/481 etc.

We will have time only to study some simple problems like
reachability, with the goal of understanding modern data

structures.

10

Path problems

Many interesting problems can be phrased as path problems in graphs.
(1) Isthere away to reach the sorted state, starting from any scrambled
position of tiles? GRAPH SEARCH (similar to search in array)

Reachability problem:
Is there a path from a given node to the node representing sorted position?

For puzzle problem, answer is no for some nodes!

112
Sam Loyd: cannot reach sorted state from 4|5

8|7

o oW

- J

12

Path problems

Cycle: Path that starts and ends at same node.

Find the smallest length cycle that passes through all nodes.

Travelling salesman’s problem: ‘

Easy to come up with slow algorithms for this problem.
No one knowsif there is an efficient algorithm for this problem.

(NP/NP-complete problems)

11

a4 N

Requirements:

1. should not get stuck in cycles (correctness)

2. should be exhaustive: if we terminate without reaching sorted
state, sorted state must be unreachable from scrambled state
(correctness)

3. should not repeatedly examine states adjacent to a

state(efficiency)

- J

14

a N

Goal: write a program to determine if sorted state is reachable

from scrambled state for puzzle problem

Idea:

e Start in the scrambled state.

Generate states adjacent to scrambled state.

Generate states adjacent to those states.

Stop if you either generate sorted state or you have generated

all states reachable from scrambled state.

Think: Graph search is similar to linear search except that we are

searching for something in a graph rather than in an array.

- J

13

4 N

Modification: before adding w to toDo set, check if it is already
there in the done set.

e Advantage: we do not put it into toDo set and get it out again
if it has already been explored.
e Disadvantage: if node has not been explored, we will look it up

in done set twice.

Code: see next slide.

- J

16

/Key Idea: Keep two sets of nodes \

1. toDo : set of nodes whose adjancies might need to be examined

2. done : set of nodes whose adjacencies have been examined

Pseudocode for Graph Search algorithm:

initialize toDo set with scrambled configuration;
while (toDo set is not empty)
{Remove a node v from toDo set;
if (v is in done set) continue;
//we reach here if we have never explored v before
for each node w adjacent to v do //there is edge (v -> w)
{If w is the goal node, declare victory;
Otherwise, add w to toDo set;
}

add v to done set;

\ /

15

/Modiﬁcation: handling self-loops more efficiently \ / Algorithm for Solving Puzzle : some possibleinitial steps \
If (v — > v) is an edge, we would add v to toDO set when

exploring v.

This is not necessary, so let us fix code.

[ar]
initialize toDo set with scrambled configuration;
while (toDo set is not empty)

{Remove a node v from toDo set; |
if (v is in done set) continue; — = =

//we reach here if we have never explored v before
add v to done set;//this optimizes self-loops a0]
for each node w adjacent to v do //there is edge (v -> w)
If (w is not in done set) {
If (w is the goal node) declare victory;
add w to toDo set; Bﬂ:configuralionintoDose(Bﬂ : configuration in Done set
}
K } J K Note: we are not keeping track of moves that brought us to a given configuration J

18 20

/ \ / Let ustry to execute afew steps of the algorithm for this problem. \

initialize toDo set with scrambled configuration;
while (toDo set is not empty)
{Remove a node v from toDo set;
if (v is in done set) continue;
//we reach here if we have never explored v before
for each node w adjacent to v do //there is edge (v -> w)
If (w is not in done set) {
If (w 1is the goal node) declare victory;
add w to toDo set;
}
add v to done set;

}

N / N /

17 19

/\Nriting generic code: \

e Order in which we explore nodes (order in which they are

difference in how quickly we find solution.
How can we write code so that it works for any sequence
structure? Answer: use subtyping

e Most time-consuming part: searching if node is in Done set.
How do we write code so that it works for any search

structure? Answer: use subtyping

e Graph search algorithm works for any graph, not just puzzle
state transition graph (all we need to some way to determine

what nodes are adjacent to a given node).

How can we write code so that it works for any graph? Use

removed from toDo set) is very important, and can make a big

K Iterators to return all adjacent vertices of a node. J

22

a N

To make this a program, we need to answer the following question:

from the toDo set? What data structure can we design to give us
the nodes in that order? How can we accommodate the fact that
the toDo set grows and shrinks?

Answer: stacks, queues, priority queues

(2) SEARCH STRUCTURE: How do we organize the Done set so
that we can search it efficiently?

Answer: binary search trees, hash tables

\

(1) SEQUENCE STRUCTURE: In what order should we get nodes

S:

J

21

///*

Code for Simulating Puzzle

class searcherq{

public static void main(String[] args) {
IPuzzle p0 = new ArrayPuzzle();
pO.move(’S?);
pO.move (’E’);
SearchStructure s = new BST();
SeqStructure q = new QAsList();
graphSearch(p0,q,s);

24

-

Two key interfaces:

SeqStructure: all sequence structures implement this interface
SearchStructure: all search structures implement this interface
For search structure, fast search is important!

For sequence structure, fast lookup is not important!

\

23

///7 if (done.search(p)) continue; “\\\

//if not, let’s explore this node
done.insert(p);
//determine adjacent nodes and process them
String Moves = "NSEW";
for (int i = 0; i < Moves.length(); i++) {
IPuzzle nP = p.duplicate();
char dir = Moves.charAt(i);
//try to make the move
boolean 0K = nP.move(dir);
if (0K) {
//move succeeded, so we have a legitimate node
if (! done.search(nP)) {
if (nP.isSorted()) {
System.out.println("Hurrah");
return;

}

\\\\ toDo.put (nP) ; 4///

26

///'//specialized to puzzle problem ‘\\\

//will work for any search structure and sequence structure
public static void graphSearch(IPuzzle pO,
SegStructure toDo,
SearchStructure done){
if (p0.isSorted()) {
System.out.println("Already sorted");
return;
}
//initialize work-list
toDo.put (p0) ;

//while there are toDo nodes
while (! toDo.isEmpty()) {
//get a toDo node
IPuzzle p = (IPuzzle)toDo.get();

///f

~

The code we have written will work for any search structure and
sequence structure that implement the interfaces defined before.

Subtyping is wonderful!

The puzzle state transition graph is hardwired into the code. We
cannot use it to perform a graph search in a general graph. We will
fix this later.

toDo data structure grows and shrinks. How do we implement a

good sequence structure?

How do we implement a good search structure?

_ /

28

4 N

}
//no more toDo nodes

System.out.println("Could not reach sorted state");

\\\‘ //have we explored this node already? 4///

25

27

