Math Review ------------------------------------------------------------------------------- Powers (x^a)(x^b) = x^(a+b) (x^a)/(x^b) = x^(a-b) (x^a)^b = x^(a*b) (xy)^a = (x^a)(y^a) Logarithms Definition: Let x^p = v and x is not 0 and 1. Then, p = log[x](v), where p is the logarithm of v to base x. Terms: common log: base 10 (social scientists) (usually log or log[10]) natural log: base e (engineers) (usually ln) binary log: base 2 (computer scientists) (usually log or lg) Laws: log[b](b^y)=y b^(log[b](x))=x log[b](uv)=log[b](u)+log[b](v) log[b](u/v)=log[b](u)-log[b](v) log[b](u^v)=v*log[b](u) log[b](x)=log[c](x)/log[c](b)=log[b](c)*log[c](x) Integral Binary Logarithm -> floor(log[2](n)) for integer n -> number of times n can be divided by 2 before reaching 1 -------------------------------------------------------------------------------