
1

Generic Programming
and

Inner classes

Goal

• First version of linear search
– Input was array of int

• More generic version of linear search
– Input was array of Comparable

• Can we write a still more generic version of linear
search that is independent of data structure?
– For example, work even with 2-D arrays of Comparable

Key ideas in solution

• Iterator interface
• Linear search written once and for all using

Iterator interface
• Data class that wants to support linear

search must implement Iterator interface
• Implementing Iterator interface

– We look at three solutions
– Inner classes provide elegant solution

boolean linearSearch (Comparable[] a, Object v) {
for (int i = 0; i < a.length; i++)

if (a[i].compareTo(v) = = 0)
return true;

return false;
}

Recall linear search code

Code in red relies on data being stored in a 1-D array.
For-loop also implicitly assumes that data is stored in 1-D array.

This code will not work if data is stored in a more general
data structure such as a 2-D array.

2

Minor rewrite of linear search
boolean linearSearch (Comparable[] a, Object v) {

int i = 0;

while (i < a.length)

if (a[i].compareTo(v) = = 0) return true;

else i++;

return false;

}

Intuitively, linear search needs to know
- are there more elements to look at?
- if so, get me the next element

Intuitive idea of generic linear
search

• Data is contained in some object.
• Object has an adapter that permits data to be enumerated in

some order.
• Adapter has two buttons

– boolean hasNext(): are there more elements to be enumerated?
– Object Next(): if so, give me a new element that has not been

enumerated so far

4 22
234 -9

4-922 Linear search

Iterator interface

interface Iterator {
boolean hasNext();
Object next();
void remove(); //we will not use this

}

This interface is predefined in Java.
Linear search is written using this interface.
Data class must provide an implementation of this interface.

Generic Linear Search

boolean linearSearch(Iterator a, Object v) {
while (a.hasNext())

if ((Comparable) a.next()).compareTo(v) = = 0)
return true;

return false;
}

boolean linearSearch(Comparable[] a, Object v){
int i = 0;
while (i < a.length)

if (a[i].compareTo(v) = = 0) return true;
return false;

}

Compare with Array version

Iterator version

3

How does data class implement Iterator interface?

Let us look at a number of solutions.

1. Adapter code is part of class containing data
2. Adapter is a separate class that is hooked up

to data class
3. Adapter is an inner class in class containing

data

Adapter (version 1)
class Crock1 implements Iterator{

protected Comparable[] a;
protected int cursor = 0; //index of next element to be enumerated
public Crock1() {
…store data in array a…

}

public boolean hasNext() {
return (cursor < a.length);

}
public Object next() {

return a[cursor++];
}
public void remove() {}//unimplementated

}

Critique
• As shown, client class can only enumerate

elements once!
– How do we reset the cursor?

• Making the data class implement Iterator directly
is something of a crock because its concern should
be with data, rather than enumeration of data.

• However, this works for other data structures such
as 2-D arrays.
– 2-D arrays: data class can keep two cursors

• one for row
• one for column
• standard orders of enumeration: row-major/column-major

• One solution to resetting the cursor:
– Data class implement a method void reset() which

resets all internal cursor(s)
– Method must be declared in Iterator interface

• But we still cannot have multiple enumerations of
elements going on at the same time

• Remember: only one cursor….

• Problem: cannot create new cursors on demand
• To solve this problem, cursor must be part of a

different class that can be instantiated any number
of times for a single data object.

4

Sharks and remoras

Data class is like shark
Iterator implementation

is like a remora.

Single shark must allow us to hook many remoras to it.

Adapter (version 2)
class Shark{

protected Comparable[] a;
public Shark() {…get data into a…}

}

class Remora implements Iterator{
int cursor;
Shark myShark;
public Remora(Shark s) {

myShark = s;
cursor = 0;

}
public boolean hasNext() {

return (cursor < myShark.a.length);}//a in Shark is protected,so accessible
public Object next() {

return myShark.a[cursor++];}
public void remove() {} //unimplemented

}

Remora teeth

…..
Shark s = new Shark(); //object containing data
…new Remora(s)….
Object v = ….;
boolean b = linearSearch(new Remora(s), v);
…..

Client code:

myShark =
cursor = 0 myShark =

cursor = 0

Shark

Remora
Remora

Critique

• Good:
– Shark class focuses on data, Remora class focuses on

enumeration
• Bad:

– Remora code relies on being able to access Shark
variables such as array a

• What if a was declared private?
• Protected access is less secure than private.

– Remora is specialized to Shark but code appears
outside Shark class

• 2-D array Shark will require a different Remora
• We may change Shark class and forget to update Remora.

5

class Shark{
protected Comparable[] a;
public Shark() {…get data into a…}
public Iterator makeRemora(){

return new Remora(this);//Shark code contains mention of Remora class
}

class Remora implements Iterator{
int cursor;
Shark myShark;
public Remora(Shark s) {

myShark = s;
cursor = 0;

}
public boolean hasNext() {

return (cursor < myShark.a.length);}//a in Shark is protected,so accessible
public Object next() {

return myShark.a[cursor++];}
public void remove() {} //unimplemented

}

Slightly better code: Shark object creates Remoras in request

Client code

…..
Shark s = new Shark(); //object containing data
…s.makeRemora()…
Object v = ….;
boolean b = linearSearch(s.makeRemora(), v);
…..

Critique

• Good:
– Shark code mentions Remora, so person

modifying Shark code is at least aware that
Remora code depends on this class.

• Bad:
– Clients can still create Remoras without

invoking makeRemora method
• Better to have language construct to enforce such a

convention

Better solution: inner classes
• Inner class: Java allows you declare a class within

another class.
• Inner classes can occur at many levels within

another class.
– Member-level

• Inner class defined as if it were another field or method
– Statement-level

• Inner class defined as if it were a statement in a method
– Expression-level

• Inner class defined as it were part of an expression
• Called anonymous classes

• Let us focus on member-level inner classes.

6

Example of inner class
class Shark{

private int i;
public Shark(int arg){

i = arg;
}
//make a new instance of inner class
public Remora makeRemora(){

return new Remora();
}
//inner class
public class Remora{

public void see(){
System.out.println(i);//inner class has access to i

}
}

}
class Client{

public static void main(String[] args){
Shark jaws1 = new Shark(7);
Shark jaws2 = new Shark(-90);
Shark.Remora r1 = jaws1.makeRemora();//create instance of inner class
Shark.Remora r2 = jaws2.new Remora();//alternate syntax
r1.see();//should print 7
r2.see();//should print -90
jaws1.makeRemora().see();//should print 7

}
}

jaws1

jaws2

7i

-90i makeRemora

makeRemora

r1 see

seer2

Points to note

• Inner class can be declared to be public, private, or
protected
– Inner class name is visible accordingly

• Inner class is instantiated by invoking method of
containing class or by outerObj.new InnerClass()
– new jaws1.Remora() does not work

• Instances of inner class have access to all
members of containing outer class instance
– In our example, member i of jaws1 is visible to r1 even

though it is private

• Keyword this in Remora class refers to Remora
object, not the outer Shark object.

• How do we get a reference to Shark object from
Remora? Here’s one way:

class Shark {

private kahuna;

public Shark() {

kahuna = this;//constructor of outer object initializes variable

…..;

}

class Remora{//inner class

… kahuna….}//inner class simply accesses variable

}

7

class Shark{
protected Comparable[] a;
public Shark() {…get data into a…}
public Iterator makeRemora(){

return new Remora();
}
protected class Remora implements Iterator{

int cursor = 0;
public boolean hasNext() {

return (cursor < a.length);
}
public Object next() {

return a[cursor++];
}
public void remove() {} //unimplemented

}
}

Back to linear search: Data class with inner class

Client code: same as before

…..
Shark s = new Shark(); //object containing data
…s.makeRemora()…
Object v = ….;
boolean b = linearSearch(s.makeRemora(), v);
…..

Adapter classes
• Inner class is like an adapter that permits client

code to work with class containing data without
modifying the data class itself.

• This is a very general design pattern that shows
up in many contexts.
– Adapter class

• To permit programmers to write adapters
compactly, Java permits programmers to write
anonymous classes.
– Class does not have a name
– Must be instantiated at the point where it is defined

Intuitive idea
import java.util.*;

class Shark{
private int i;
public Shark(int arg){

i = arg;
}
//make a new instance of inner class
public Remora makeRemora(){

return new Remora();
}
//inner class
public class Remora{

public void see(){
System.out.println(i);//inner class has access to i

}
}

}
class Client{

public static void main(String[] args){
Shark jaws1 = new Shark(7);
Shark jaws2 = new Shark(-90);
Shark.Remora r1 = jaws1.makeRemora();//create instance of inner class
Shark.Remora r2 = jaws2.new Remora();//alternate syntax
r1.see();//should print 7
r2.see();//should print -90
jaws1.makeRemora().see();//should print 7

}
}

8

Anonymous classes

• Class declaration has usual body but
– inner class
– no name
– no access specifier: public/private/protected
– no explicit extends or implements:

• it either extends one class or implements one
interface

– no constructor

• Creating an instance of anonymous class A:
– If class A is extending a superclass P

• new P {body of A}; //creates instance of anon class
• Can invoke appropriate constructor of P by passing arguments

to P as in new P(79) {body of A};
• Assignment: P x = new P {body of A};
• Think: anonymous class should only override methods of

superclass and not define any other methods.
– If it did, how would you invoke these methods?

» Something like x.coolMethod(); //???
– What would the type checker do??

– If class A is implementing interface I
• new I {body of A}
• Assignment: I foo = new I{body of A};
• Think: anonymous class should only implement interface

methods, and not any other methods.

Anonymous class
interface IRemora{

void see();
}

class Shark{
private int i;
public Shark(int arg){

i = arg;
}
//make a new instance of anonymous class
public IRemora makeRemora(){

return new IRemora(){
public void see(){

System.out.println(i);
}
};

}
}
class Client{

public static void main(String[] args){
Shark jaws1 = new Shark(7);
Shark jaws2 = new Shark(90);
IRemora r1 = jaws1.makeRemora();//one way to instantiate inner class
IRemora r2 = jaws2.makeRemora();
r1.see();//should print 7
r2.see();//should print 90
jaws1.makeRemora().see();//should print 7

}
}

Conclusions

• Generic code:
– works on data collections without much regard to type

of data elements or type of data structure
• Writing generic code:

– Iterator interface is very useful
– use inner classes to implement Iterator

• C++ Standard Template Library:
– more complex iterators

