Generic Programming
and
Inner classes

Goal

* First version of linear search
— Input was array of int
* More generic version of linear search
— Input was array of Comparable
» Can we write a still more generic version of linear
search that is independent of data structure?
— For example, work even with 2-D arrays of Comparable

Key ideas in solution

Iterator interface

Linear search written once and for all using
Iterator interface

Data class that wants to support linear
search must implement Iterator interface
Implementing Iterator interface

— We look at three solutions

— Inner classes provide elegant solution

Recall linear search code

boolean linearSearch (Comparable[] a, Object v) {
for (int i = 0; i < a.length; i++)
if (a[i].compareTo(v) = = 0)
return true;
return false;

}

Code in red relies on data being stored in a 1-D array.
For-loop also implicitly assumes that data is stored in 1-D array.

This code will not work if data is stored in a more general
data structure such as a 2-D array.

Minor rewrite of linear search

boolean linearSearch (Comparable[] a, Object v) {

inti=0;

while (i < a.length)
if (a[i].compareTo(v) = = 0) return true; «—
else i++;

return false;
}

Intuitively, linear search needs to know
- are there more elements to look at?
- if so, get me the next element

Intuitive idea of generic linear
search

22 9 4 Linear search

» Data is contained/in some object.
* Object has an adapter that permits data to be enumerated in
some order.
» Adapter has two buttons
— boolean hasNext(): are there more elements to be enumerated?

— Object Next(): if so, give me a new element that has not been
enumerated so far

Iterator interface

interface Iterator {
boolean hasNext();
Object next();
void remove(); //we will not use this

}

This interface is predefined in Java.
Linear search is written using this interface.
Data class must provide an implementation of this interface.

Generic Linear Search

Tterator version

boolean linearSearch(Iterator a, Object v) {
while (a.hasNext())
if ((Comparable) a.next()).compareTo(v) == 0)
return true;
return false;

Compare with Array version

boolean linearSearch(Comparable[] a, Object v){
inti=0;
while (i < a.length)
if (a[i].compareTo(v) = = 0) return true;
return false;

How does data class implement Iterator interface?

Let us look at a number of solutions.

Adapter code is part of class containing data

2. Adapter is a separate class that is hooked up
to data class

3. Adapter is an inner class in class containing
data

Adapter (version 1)

class Crockl implements Iterator {

protected Comparable[] a;
protected int cursor = 0; //index of next element to be enumerated
public Crock1() {

...store data in array a...

}

public boolean hasNext() {
return (cursor < a.length);

v

s

public Object next() {
return afcursor++];

v

s
public void remove() {}//unimplementated

Critique

* As shown, client class can only enumerate
elements once!
— How do we reset the cursor?

» Making the data class implement Iterator directly
is something of a crock because its concern should
be with data, rather than enumeration of data.

» However, this works for other data structures such
as 2-D arrays.
— 2-D arrays: data class can keep two cursors
« one for row
« one for column
« standard orders of enumeration: row-major/column-major

One solution to resetting the cursor:

— Data class implement a method void reset() which
resets all internal cursor(s)

— Method must be declared in Iterator interface
But we still cannot have multiple enumerations of
elements going on at the same time

* Remember: only one cursor....
Problem: cannot create new cursors on demand
To solve this problem, cursor must be part of a
different class that can be instantiated any number
of times for a single data object.

Sharks and remoras

Iterator implementation

is like a remora. Data class is like shark

Adapter (version 2)

class Shark {

protected Comparable[] a;

public Shark() {...get data into a...}
}

class Remora implements Iterator{
int cursor; ’
Shark myShark;
public Remora(Shark s) { =
myShark =s; \‘

cursor = 0; Remora teeth

}
public boolean hasNext() {
return (cursor < myShark.a.length);}//a in Shark is protected,so accessible
public Object next() {
return myShark.a[cursor++];}
public void remove() {} //unimplemented

Single shark must allow us to hook many remoras to it. }
. Critique
Client code:
‘Shark hark(); //obj ining d » Good:
Shark s = new Shark(); //object containing data — Shark class focuses on data, Remora class focuses on
...new Remora(s).... X
Object v =; enumeration
boolean b = linearSearch(new Remora(s), v); * Bad:

Shark
<

]
myShark = ‘
cursor = 0 myShark =

cursor =0
® o

Remora e e°

Remora

— Remora code relies on being able to access Shark
variables such as array a
» What if a was declared private?
* Protected access is less secure than private.
— Remora is specialized to Shark but code appears
outside Shark class
* 2-D array Shark will require a different Remora
* We may change Shark class and forget to update Remora.

Slightly better code: Shark object creates Remoras in request

class Shark {
protected Comparable[] a;
public Shark() {...get data into a...}
public Iterator makeRemora(){
return new Remora(this);//Shark code contains mention of Remora class

Client code

Shark s = new Shark(); //object containing data

)
. ...s.makeR
class Remora implements Iterator{ s.makeRemora()

N Objectv="....;

1Snl: Cllirsor;sh " boolean b = linearSearch(s.makeRemora(), v);
ark myShark;

public Remora(Shark s) {
myShark = s;
cursor = 0;

public boolean hasNext() {

return (cursor < myShark.a.length); }//a in Shark is protected,so accessible
public Object next() {

return myShark.a[cursor++];}
public void remove() {} //unimplemented

Better solution: inner classes

Critique
* Inner class: Java allows you declare a class within

* Good: another class.

* Inner classes can occur at many levels within

— Shark code mentions Remora, so person
another class.

modifying Shark code is at least aware that

Remora code depends on this class. — Member-level
« Inner class defined as if it were another field or method
* Bad: — Statement-level
— Clients can still create Remoras without « Inner class defined as if it were a statement in a method
invoking makeRemora method — Expression-level
* Better to have language construct to enforce such a « Inner class defined as it were part of an expression

« Called anonymous classes

* Let us focus on member-level inner classes.

convention

Example of inner class

class Shark {
private int i;
public Shark(int arg){
i=arg;
}
//make a new instance of inner class
public Remora makeRemora() {
return new Remora();
}
inner class
public class Remora {
public void see(){
System.out.printIn(i);//inner class has access to i
y

}
class Client{
public static void main(String[] args){

Shark jaws1 = new Shark(7);
Shark jaws2 = new Shark(-90);
Shark.Remora rl = jaws1.makeRemora();//create instance of inner class
Shark.Remora r2 = jaws2.new Remora();//alternate syntax
r1.see()://should print 7
r2.see()://should print -90
Jjawsl.makeRemora().see();//should print 7

jawsl

. [
1 makeRemora

@
rl| see

jaws2

i [)
L makeRemora

12| see

Points to note

* Inner class can be declared to be public, private, or
protected
— Inner class name is visible accordingly
* Inner class is instantiated by invoking method of
containing class or by outerObj.new InnerClass()
— new jawsl.Remora() does not work
* Instances of inner class have access to all
members of containing outer class instance

— In our example, member i of jaws] is visible to r1 even
though it is private

» Keyword this in Remora class refers to Remora
object, not the outer Shark object.

* How do we get a reference to Shark object from
Remora? Here’s one way:

class Shark {
private kahuna;
public Shark() {
kahuna = this;//constructor of outer object initializes variable

class Remora{//inner class

... kahuna....}//inner class simply accesses variable

Back to linear search: Data class with inner class

class Shark {
protected Comparable[] a;
public Shark() {...get data into a...}
public Iterator makeRemora(){
return new Remora();
v
protected class Remora implements Iterator {
int cursor = 0;
public boolean hasNext() {
return (cursor < a.length);
}
public Object next() {
return a[cursor++];
}

public void remove() {} //unimplemented

Client code: same as before

Shark s = new Shark(); //object containing data
...s.makeRemora()...

Objectv="....;

boolean b = linearSearch(s.makeRemora(), v);

Adapter classes

* Inner class is like an adapter that permits client
code to work with class containing data without
modifying the data class itself.

 This is a very general design pattern that shows
up in many contexts.

— Adapter class
* To permit programmers to write adapters

compactly, Java permits programmers to write
anonymous classes.

— Class does not have a name
— Must be instantiated at the point where it is defined

Intuitive 1dea

import java.util*;

class Shark {

private int i;

public Shark(int arg){
i=arg;

i

//make a new instance of inner class

public Remora makeRemora(){
return new Remerat—

/finner class

public void see(){
System.out println(i);//inner class has access to i

)

}

class Client{
public static void main(String(] args) {
Shark jaws1 = new Shark(7);
Shark jaws2 = new Shark(-90);
Shark Remora rl = jaws].makeRemora();//create instance of inner class
Shark Remora 2 = jaws2.new Remora():/alternate syntax
rl.see()/should print 7
r2.see()//should print -90
jaws 1 makeRemora() see();//should print 7

Anonymous classes

* Class declaration has usual body but
— inner class
— no name
— no access specifier: public/private/protected
— no explicit extends or implements:

* it either extends one class or implements one
interface

— no constructor

+ Creating an instance of anonymous class A:
— If class A is extending a superclass P
new P {body of A}; //creates instance of anon class
Can invoke appropriate constructor of P by passing arguments
toPasin new P(79) {body of A};
Assignment: P x =new P {body of A};
Think: anonymous class should only override methods of
superclass and not define any other methods.
— If it did, how would you invoke these methods?
» Something like x.coolMethod(); //?7?
— What would the type checker do??
— If class A is implementing interface I
* new I {body of A}
» Assignment: [foo=new [{body of A};
* Think: anonymous class should only implement interface
methods, and not any other methods.

Anonymous class

interface IRemora {
void see();
class Shark
private int i;
public Shark(int arg){
i=arg:
i
//make a new instance of anonymous class
public IRemora makeRemora(){
return new IRemora(){
public void see(){
System.out.println(i):

i
class Client{
public static void main(String[] args){
Shark jaws1 = new Shark(7);
Shark jaws2 = new Shark(90);
IRemora rl = jaws].makeRemora();/fone way to instantiate inner class
IRemora 12 = jaws2.makeRemora();
rl.see()://should print 7
12.see()://should print 90
jaws].makeRemora().see()://should print

Conclusions

¢ Generic code:

— works on data collections without much regard to type
of data elements or type of data structure

» Writing generic code:

— Iterator interface is very useful

— use inner classes to implement Iterator
e C++ Standard Template Library:

— more complex iterators

