
FALL 2003 CS211
SECTION 3

❒ Announcements

• many section files posted
• applications.html
• lecture files on the way!
• A2 due next week

❒ Overview

• answer questions
• recursion
• tail recursion
• Towers of Hanoi

1. Recursion

1.1 Induction

• show that induction process helps to “wire” your brain
for recursion

• if you can identify base case, inductive hypothesis, and
inductive step, you’re very close!

1.2 Example

• iterative sum of n integers :
- S(0) = 0
- S(1) = 1 + 0 = 1
- S(2) = 2 + 1 + 0 = 3
- S(3) = 3 + 2 + 1 = 6
- …
- S(n) = (n+1)*n/2
• recursive sum of n integers:
- S(0) = 0
- S(n) = n + S(n-1)
- check:

S(1) = 1 + S(0) = 1
S(2) = 2 + S(1) = 2 + 1 + 0 = 3
S(3) = 3 + S(2) = 3 + 2 + 1 + 0 = 6

• identical, but completely different ways to state
- iterative screams of loops
- recursive is … well, recursive

1.3 Iterative Solution

• Algorithm:
- get n >= 0
- count ← 0, sum ← 0
- if count <= n, sum increments by count
- repeat

• Code:

public class IterativeSum {
public static void main(String[] args) {

final int N = Integer.parseInt(args[0]);
int sum = 0;
for (int k = 0 ; k <= N ; sum+=k, k++);
System.out.println(sum);

}
}

1
 2
3
 4

1.4 Recursive Solution

• Algorithm:
- get n.
- if n is 0, sum ← 0
- otherwise, sum ← n + sum(n-1)

• Code:

public class RecursiveSum {

public static void main(String[] args) {

final int N = Integer.parseInt(args[0]);
int sum = sum(N);
System.out.println(sum);

}

private static int sum(int n) {
if (n==0)

return 0;
else

return n + sum(n-1);
}

}

} // Class RecursiveSum

1.5 Alternative Recursive Solution

public class RecursiveSumAlt {

public static void main(String[] args) {

final int N = Integer.parseInt(args[0]);
int sum = sum(N);
System.out.println(sum);

}

private static int sum(int n) {
int sum;
if (n==0)

sum = 0;
else

sum = n + sum(n-1);
return sum;

}

} // Class RecursiveSumAlt
1.6 Cool Concepts

• Computational path for a recursive series is two-way:
- 1st path goes up: recursive calls pile up on stack
- 2nd path goes down: answers combined together
- So, the 1st path breaks the problem down into simple

basic components, and the 2nd path assembles the sol
• You can calculate really complex things using recursion

with simple sub-processes.
• Two essential parts of any recursive definition:

- Base case(s): tells the recursion when to stop
- Recursive step: tells the recursion how to break a

problem into an operation it knows (e.g., addition)
and a simpler problem (S(n-1))

• sum(2) example:

s ? s 0
n 0 n 0
rv ? rv 0 rv 0
---- ---- ----

s ? s ? s ? s ? s 0
 n 1 n 1 n 1 n 1 n 1
rv ? rv ? rv ? rv 1 rv 1 rv 1
---- ---- ---- ---- ---- ----

s ? s ? s ? s ? s ? s ? s ? s 3
n 2 n 2 n 2 n 2 n 2 n 2 n 2 n 2
rv ? rv ? rv ? rv ? rv ? rv ? rv ? rv 3 rv 3
---- ---- ---- ---- ---- ---- ---- ---- ----

2. Tail Recursion

2.1 Definition

• tail recursion: last action by recursive method is a
recursive call

• generally can easily convert tail recursive method into
an iterative (loop) form

• see example from before: I counted how many sums I
needed to know

2.2 Why?

• recursion builds frame upon frame on the stack
• consumes large amount of memory if recursion is deep
• space efficiency can be improved by jumping up and

down in the same frame for one method call
• will see this issue later in asymptotic complexity
5
 6
7
 8

	Fall 2003 CS211 Section 3
	1. Recursion
	1.1 Induction
	1.2 Example
	1.3 Iterative Solution
	1.4 Recursive Solution
	1.5 Alternative Recursive Solution
	1.6 Cool Concepts

	2. Tail Recursion
	2.1 Definition
	2.2 Why?

